

CHANGES IN PLANTAR PRESSURE AND GAIT VARIABLES IN INDIVIDUALS WITH KNEE OSTEOARTHRITIS

Abstract ID: MRCHS139

Ms. Saidan Shetty, Dr. Bincy M George, Dr. G Arun Maiya, Dr. Sandeep Vijayan, Dr. Mohandas Rao KG

Presenting Author: Ms. Saidan Shetty, Structured PhD Scholar (Full-time)
Manipal Academy of Higher Education (MAHE), Manipal

Introduction

• Knee Osteoarthritis (OA) is a degenerative joint disease characterized by pain and stiffness. These symptoms arise due to abrasion of the articular surface and directly affect the functional ability of the individual

(Dillon et al., 2006; Nelson et al., 2017; Arik et al., 2019)

• Globally, prevalent cases of OA have increased by 113.25%, from 247.51 million in 1990 to 527.81 million in 2019

(Symmons et al., 2000; Silman & Hochberg, 2001; Long et al., 2022)

Introduction

• It is the most frequent joint disease with a prevalence of 22% to 39% in India

(Muhammad et al., 2021)

• Pain during gait is the most common and problematic symptom in individuals with knee OA

• Due to pain, movement dysfunction, and residual deformity, there is noticeable change in the gait pattern affecting daily activities

(Boyer et al., 2012; Teichtahl et al., 2013; Saito et al., 2013)

Need and Objective

 Understanding the plantar pressure distribution and gait variables in individuals with knee OA is imperative for evaluating well-being, disease progression, and intervention efficacy

• Therefore, the objective is to determine the changes in plantar pressure, and spatio-temporal gait variables in individuals with knee OA

Methods

- **Study design**: Cross-sectional study
- Study setting: Department of Physiotherapy and Department of Orthopaedics, Kasturba Hospital, Manipal
- **Participants**: Individuals with diagnosed knee osteoarthritis (knee OA group) and age, gender, and BMI matched individuals (control group)
- The plantar pressure assessment, and gait analysis was done using Win-Track (Medicapteurs Technology France) force platform 5

Methods

Equipment/ materials used:

(Medicapteurs Technology France)

- * Digital weighing scale
- Stadiometer
- Foot size measuring scale

Methods

Inclusion and Exclusion criteria

Inclusion criteria of knee OA group	Inclusion criteria of control group	Exclusion criteria	
Patients with diagnosed	Age, gender, and BMI	Patients who had	
primary knee osteoarthritis	matched healthy individuals	neurological deficits,	
	who do not have any current	inflammatory arthritis	
	lower extremity orthopaedic	with multiple joint	
	injuries or neurological,	involvement and post	
	immunological, inflammatory,	traumatic arthritis	
	or cardiovascular diseases		
Age: Individuals aged 50	Age: Individuals aged 50 to	Who are not willing to	
to 80 years	80 years	participate in the study	
Gender: Both males and females	Gender: Both males and of Emalos pal Academy of Higher Education, Man	ripal	

Results

Table 1: Demographic & Anthropometric characteristics of knee OA and control group participants

Variables (Mean ± SD)	Knee OA group (n= 35)	Control group (n= 35)
Age (in years)	66.9 ± 7.1	62.78 ± 5.64
Gender (Female: Male)	23: 12	23: 12
Height (in cm)	155.8 ± 8.45	157.43 ± 6.12
Weight (in kg)	69.2 ± 14.1	65.8 ± 12.3
BMI (in kg/m2)	28.36 ± 11.3	28.28 ± 11.21

Plantar Pressure Analysis

Table 2: Plantar pressure analysis during 3 steps of knee OA and control group participants

Plantar Pressure Analysis	Knee OA group	Control group	
Area T1 (cm2)	50.8 ± 44.65	81.4 ± 22.09	
Area T2 (cm2)	34.1 ± 44.03	77.2 ± 13.29	
Area T3 (cm2)	34.9 ± 43.34	81.5 ± 23.72	
Average Pressure T1 (kPa)	110.65 ± 25.44	139.12 ± 14.96	
Average Pressure T2 (kPa)	42.73 ± 53.20	116.72 ± 15.57	
Average Pressure T3 (kPa)	39.03 ± 48.09	115.68 ± 17.59	
Maximal Pressure T1 (kPa)	291.59 ± 63.82	332.17 ± 49.11	
Maximal Pressure T2 (kPa)	116.97 ± 145.58	332.17 ± 49.11	
Maximal Pressure T3 (kPa)	111.25 ± 139.53	332.17 ± 49.11	

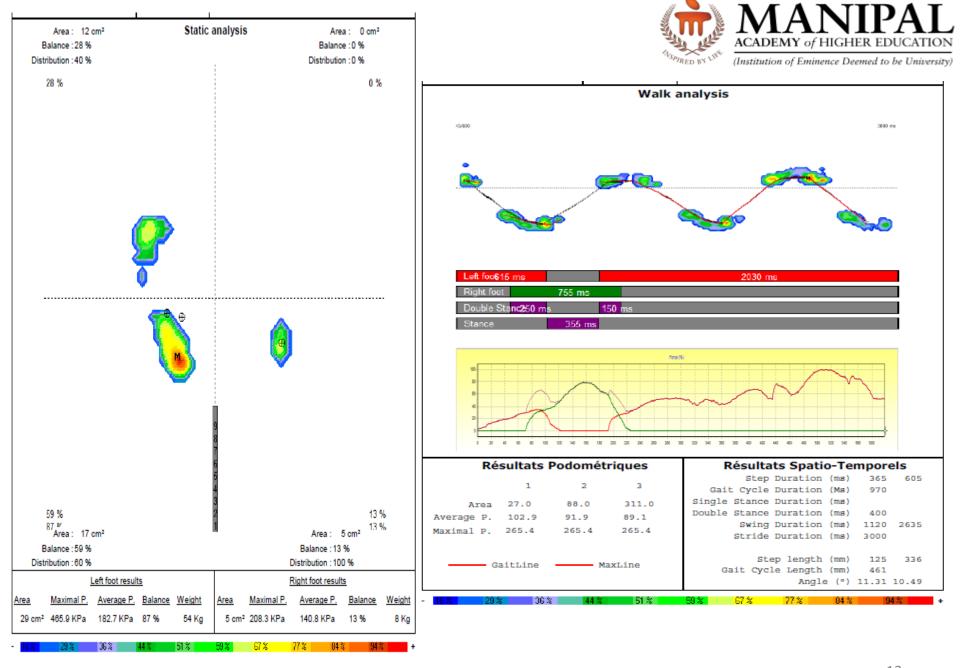
MRC- 2023, Manipal Academy of Higher Education, Manipal

Gait Analysis

Table 3: Spatio-temporal variables of gait analysis of knee OA and control group participants

Spatio-temporal Variables of Gait Analysis	Knee OA group Right	Knee OA group Left	Control group Right	Control group Left
Step Duration (ms)	686.66 ± 522.46	613.75 ± 90.51	560.5 ± 83.07	567 ± 95.55
Gait Cycle Duration (Ms)	947 ± 776.75	1208.75 ± 487.72	1153.75 ± 103.55	1117.5 ± 152.23
Single Stance Duration (ms)	-	401.66 ± 259.78	-	465.83 ± 91.44
Double Stance Duration (ms)	1561.87 ± 897.65	1637.5 ± 1105.55	226.87 ± 66.09	243.12 ± 55.56
Swing Duration (ms)	1407 ± 395.64	1179.5 ± 284.10	1278.5 ± 156.22	1241.5 ± 151.93

TU



Gait Analysis

Table 3 (continued): Spatio-temporal variables of gait analysis of knee OA and control group participants

Spatio-temporal Variables of Gait Analysis	Knee OA Group Right	Knee OA Group Left	Control group Right	Control group Left
Stride Duration (ms)	1540 ± 634.01	2226.66 ± 795.48	1846.87 ± 158.72	1710 ± 458.16
Step Length (mm)	200.66 ± 228.77	273.4 ± 190.66	441.2 ± 81.44	470.2 ± 59.20
Gait Cycle Length (mm)	257.87 ± 321.07	531.2 ± 388.47	897.25 ± 132.15	881.8 ± 139.24
Angle (degrees)	13.87 ± 3.165	13.33 ± 7.099	7.04 ± 2.77	11.30 ± 5.57

MRC- 2023, Manipal Academy of Higher Education, Manipal

Results

- During static pressure analysis; knee OA group tend to put more weight on unaffected/less affected side especially on the heel
- During dynamic analysis; average pressure, maximal pressure, gait cycle length, and step length was significantly higher in the control group than knee OA group (p<0.05)
- Double stance duration, angle of toe out on right, and left step duration and stride duration was significantly higher in the knee OA group than control group (p<0.05)

Conclusion

• Overall, it is noted that individuals with knee OA lack the normal heel toe gait pattern and the average and maximal plantar pressure was comparatively less in these individuals

 These individuals tend to walk with gait deviations and compensations due to which significant changes were observed in the spatiotemporal gait variables when compared to the controls

References

- Dillon CF, Rasch EK, Gu Q, Hirsch R. Prevalence of knee osteoarthritis in the United States: arthritis data from the Third National Health and Nutrition Examination Survey 1991-94. The Journal of rheumatology. 2006 Nov 1;33(11):2271-9.
- Nelson AE. Osteoarthritis year in review 2017: clinical. Osteoarthritis and cartilage. 2018 Mar 1;26(3):319-25.
- Silman AJ, Hochberg MC. Epidemiology of the rheumatic diseases. Oxford University Press; 2001.
- Long H, Liu Q, Yin H, Wang K, Diao N, Zhang Y, Lin J, Guo A. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the Global Burden of Disease Study 2019. Arthritis & Rheumatology. 2022 Jul;74(7):1172-83.
- Muhammad T, Maurya P, Sharma P. Prevalence and correlates of bone and joint diseases and its association with falls among older adults in India: Evidence from LASI, 2017–18. Geriatric nursing. 2021 Sep 1;42(5):1143-50.
- Tse CT, Ryan MB, Dien J, Scott A, Hunt MA. An exploration of changes in plantar pressure distributions during walking with standalone and supported lateral wedge insole designs. Journal of foot and ankle research. 2021 Dec;14:1-1.
- Saito I, Okada K, Nishi T, Wakasa M, Saito A, Sugawara K, Takahashi Y, Kinoshita K. Foot pressure pattern and its correlation with knee range of motion limitations for individuals with medial knee osteoarthritis. Archives of physical medicine and rehabilitation. 2013 Dec 1;94(12):2502-8.
- Arık MI, Aras Ö, Akkan H, Şahin NY, Kurt V, Aksoy CC, Üzümcügil AO. How does Plantar Pressure Distribution Change Early after Total Knee Arthroplasty? A Pilot Study. Osmangazi Tıp Dergisi. 2018.
- Heil L, Maltry L, Lehmann S, Heil D, Lehmann C, Kopp S, Wanke EM, Bendels MH, Groneberg DA, Ohlendorf D. The impact of a total knee arthroplasty on jaw movements, upper body posture, plantar pressure distribution, and postural control. CRANIO®. 2021 Jan 2;39(1):35-46.
- Teichtahl AJ, Wluka AE, Wang Y, Strauss BJ, Proietto J, Dixon JB, Jones G, Forbes A, Kouloyan-Ilic S, Martel-Pelletier J, Pelletier JP. The longitudinal relationship between changes in body weight and changes in medial tibial cartilage, and pain among community-based adults with and without meniscal tears. Annals of the rheumatic diseases. 2014 Sep 1;73(9):1652-8.
- Boyer KA, Angst MS, Asay J, Giori NJ, Andriacchi TP. Sensitivity of gait parameters to the effects of anti-inflammatory and opioid treatments in knee osteoarthritis patients. Journal of Orthopaedic Research. 2012 Jul;30(7):1118-24.

Thank you