
Manipal Journal of Science and Technology Manipal Journal of Science and Technology 

Volume 5 Issue 1 Article 6 

6-1-2020 

A Novel Greedy Based Algorithm for Resource Allocation in Cloud A Novel Greedy Based Algorithm for Resource Allocation in Cloud 

Computing Environment Computing Environment 

Vijendra Pratap Singh 
Banaras Hindu University, Varanasi, Uttar Pradesh, India, vijendrap.singh4@bhu.ac.in 

Follow this and additional works at: https://impressions.manipal.edu/mjst 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Singh, Vijendra Pratap (2020) "A Novel Greedy Based Algorithm for Resource Allocation in Cloud 
Computing Environment," Manipal Journal of Science and Technology: Vol. 5: Iss. 1, Article 6. 
Available at: https://impressions.manipal.edu/mjst/vol5/iss1/6 

This Original Research Article is brought to you for free and open access by the MAHE Journals at 
Impressions@MAHE. It has been accepted for inclusion in Manipal Journal of Science and Technology by an 
authorized editor of Impressions@MAHE. For more information, please contact impressions@manipal.edu. 

https://impressions.manipal.edu/mjst
https://impressions.manipal.edu/mjst/vol5
https://impressions.manipal.edu/mjst/vol5/iss1
https://impressions.manipal.edu/mjst/vol5/iss1/6
https://impressions.manipal.edu/mjst?utm_source=impressions.manipal.edu%2Fmjst%2Fvol5%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=impressions.manipal.edu%2Fmjst%2Fvol5%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://impressions.manipal.edu/mjst/vol5/iss1/6?utm_source=impressions.manipal.edu%2Fmjst%2Fvol5%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:impressions@manipal.edu


Sunil Kumar et al: A Novel Greedy Based Algorithm for Resource Allocation in Cloud Computing Environment

1 Manipal Journal of Science and Technology | June 2020 | Volume 5 | Issue 1

Sunil Kumar1, Vijendra Pratap Singh1, Pangambam Sendash 
Singh1

1	Department of Computer Science, Banaras Hindu University, 
Varanasi, Uttar Pradesh, India.

Manuscript received: 21 April 2020
Revision accepted: 20 May 2020

* Corresponding Author

Research Article

A Novel Greedy Based Algorithm for Resource Allocation 
in Cloud Computing Environment
Sunil Kumar, Vijendra Pratap Singh*, Pangambam Sendash Singh

Email: vijendrap.singh4@bhu.ac.in

Abstract

Resource allocation in a cloud computing environment means a mechanism to allocate different cloudlets to the 
available cloud resources on the basis of some criteria like cloudlets’ characteristics and/or requirements. It is 
one of the major challenges for cloud providers. Cloud providers have introduced many models for resource 
allocation. In this paper, we have proposed a greedy-based resource allocation algorithm. Here, first of all, the 
given cloudlets are classified into two categories: computational cloudlets and interactive cloudlets on the basis 
of some parameters. Next according to their category, they are allocated differently. The performance metrics of 
this newly proposed algorithm are calculated and compared with traditional resource allocation techniques viz. 
FCFS and SClF. For validation of our algorithm, we set up experimental environments and implemented them in 
CloudSim. We found that in different scenarios our newly proposed resource allocation algorithm works better 
than traditional techniques in terms of resource utilization, completion time, throughput, etc.

Keywords: Cloud computing, Resource allocation, Virtual machine, Greedy algorithm.

How to cite this article: Sunil Kumar, Vijendra Pratap Singh, Pangambam Sendash Singh. “A Novel Greedy Based Algorithm for 
Resource Allocation in Cloud Computing Environment”, Manipal J. Sci. Tech., vol.5(1), 32-39, 2020.

Introduction
Cloud computing is an internet-based computing 
service that provides resources based on service-level 
agreements (SLAs) established between the cloud 
providers and cloud end users [1]. Resources may be 
of the following types viz. processing elements (PEs), 
CPUs, RAM, storage, bandwidth (BW), etc. Cloud 
providers provide a pool of abstract, virtualized, 
and scalable resources to the cloud users based on a 
pay-as-you-go (PAYG) model on-demand basis. Cloud 
resources are provided as three different types of 
services: Infrastructure-as-a-Service (IaaS), Software-
as-a-Service (SaaS) and Platform-as-a-Service (PaaS) 
[2]. The IaaS provides a fabric layer or hardware 
of cloud environments like CPUs, memory, storage, 
network bandwidth, etc. In other words, we can say 

that resource service provides hardware resources 
such as computing processors, network resources, 
storage, and memory, as a service for remote clients. 
The PaaS provides a computing environment where 
users can develop their own software/applications. 
SaaS is providing already created applications to the 
users. In this paper, we focus on IaaS where cloud 
providers provide resources in terms of virtual 
machine (VM) instances.

Resource (VM) allocation means assigning the 
different cloudlets to appropriate VMs. These 
resource allocation algorithms aim to minimize 
the execution time and maximize throughput with 
better utilization of the available resources. Cloud 
providers often face many decision problems during 
resource allocation. Nowadays, resource allocation 
has also become complicated due to limited cloud 
resources and increasing cloud users. There are 
some traditional allocation techniques like First 
Come First Serve (FCFS) technique, Shortest Cloudlet 
First (SClF) technique, etc. Different cloud providers 
have also introduced different resource allocation 
algorithms.

1

Singh: A Novel Greedy Based Algorithm for Resource Allocation in Cloud C

Published by Impressions@MAHE, 2020



Sunil Kumar et al: A Novel Greedy Based Algorithm for Resource Allocation in Cloud Computing Environment

2Manipal Journal of Science and Technology | June 2020 | Volume 5 | Issue 1

Greedy algorithm [3] is a class of optimization 
algorithms in which the current best choice is chosen 
for solving the problem without worrying about the 
future, with the hope that it will give the optimal 
solution. But in most cases, the Greedy algorithm 
does not give the globally optimal solution; it gives 
the approximated optimal solution. In this paper, we 
introduce a Greedy-based VM allocation algorithm 
that can be used for resource allocation in a cloud 
environment. The detailed algorithm is explained 
in section 3. The newly proposed algorithm is 
implemented and simulated for different input data 
sets on the CloudSim-3.0.3 framework at the Java 
platform [2] and it is compared with traditional 
allocation techniques like FCFS and SClF on the 
basis of performance metrics like makespan, mean 
execution time, and throughput. And we find that 
this allocation algorithm works better than FCFS 
and SClF.

The rest of this paper is organized as follows. In 
section 2 we will give some related works. Traditional 
allocation techniques FCFS, SClF as well as some 
basic terminologies are described in section 3. Our 
newly proposed algorithm is explained in section 
4. Experimental details and simulation results are 
presented in section 5. Lastly, in section 6; we give a 
brief conclusion and future directions.

Related works
In a cloud environment, a data center is a set of hosts 
where numbers of virtual machines exist in the same 
hosts [2]. Each virtual machine has some computing 
resources which are allocated to the specific 
cloudlets/tasks according to their needs in a way 
that it maximizes the throughput and minimizes the 
makespan. There are many job scheduling algorithms 
based on traditional algorithms (e.g., FCFS, Priority, 
Round-Robin, SClF, etc) which are used efficiently 
for resource allocation. In [4], the authors proposed 
a model for Grid Computing which is known as Swift 
Scheduler. According to this model, the assignment 
of jobs to the resources is done as First it stores all 
the user jobs and resources in their respective queue. 
After that, it arranges the job queue in ascending 
order according to their length and calculates their 
expected processing time for all resources. Cloudsim 
- a Java based platform is introduced in [2] to model, 
simulate cloud computing environments and analyze 

their results. Different allocation policies, different 
available classes and features of this simulator are 
explained in detail. In [5], the authors established 
a mechanism for scheduling that follows the Lexi 
search approach. The main benefit of using the 
Lexi search approach is to find an optimal feasible 
assignment. The proposed algorithm is working 
as: First, the requests or user tasks are stored in a 
job pool or central middleware, and then these jobs 
are partitioned. Two algorithms: LCFP (Longest 
Cloudlet Fastest Processing Element) and SCFP 
(Shortest Cloudlet Fastest Processing Element) are 
proposed in [6]. According to LCFP, the lengthier 
cloudlets assign to the VM which has the maximum 
processing elements to minimize the makespan. 
According to SCFP, the shorter cloudlets assign to the 
VM which has the maximum processing elements 
to reduce the flowtime. A survey of some existing 
scheduling algorithms on the basis of different 
parameters, scheduling strategy, and performance 
metrics etc. is found in [7]. In [8], the authors 
proposed an algorithm with some improvement in 
the traditional Max-Min algorithm which is used for 
task scheduling. In a traditional Max-Min algorithm, 
it selects the job which has the highest completion 
time and assigns it to the resource where it executes 
in less time. The proposed algorithm in the paper 
selects the task which has minimum completion 
time and assigns it to a resource where it executes 
on average or nearest greater than average time. 
An improved load balancing algorithm by using 
the Min-Min algorithm is presented in [9] in order 
to minimize makespan and maximize resource 
utilization. According to the algorithm, it divides 
all the submitted jobs into two groups: one group 
represents VIPs task means higher priority and the 
second group represents User’s task means lower 
priority. After dividing, it executes both job groups 
according to the Min-Min algorithm and computes 
the makespan. Then, it selects the VIPs task and 
chooses the task which has minimum completion 
time and assigns it to VM which is heavily loaded and 
computes its completion time. Using this algorithm, 
it easily manages the load on each VM such that the 
value of makespan for all tasks is less. In [10], the 
authors proposed an algorithm for load balancing 
which uses the concept of Honey bee behaviour. The 
main purpose of this algorithm is to maximize the 
throughput such that the load on each VM should be 

2

Manipal Journal of Science and Technology, Vol. 5 [2020], Iss. 1, Art. 6

https://impressions.manipal.edu/mjst/vol5/iss1/6



Sunil Kumar et al: A Novel Greedy Based Algorithm for Resource Allocation in Cloud Computing Environment

3 Manipal Journal of Science and Technology | June 2020 | Volume 5 | Issue 1

balanced. In [11], the authors proposed a resource 
scheduling algorithm in cloud computing based 
on genetic algorithm techniques. In this algorithm, 
cloudlets are grouped on the basis of data and 
requested resources and it is prioritized. Resource 
selection is done on the basis of cost and turnaround 
time using a greedy approach. Using this algorithm 
energy consumption can be saved and resource 
utilization can also be increased. Various scheduling 
algorithms and issues related to them in a cloud 
computing environment are discussed in [12]. It is 
also mentioned that existing scheduling algorithms 
give high throughput and they are cost-effective, but 
they do not consider the reliability and availability 
of the resource. So they need to be improved. In [3], 
the authors proposed a greedy-based job scheduling 
technique in cloud computing. Using this algorithm 
completion time of the submitted cloudlets can be 
decreased and user satisfaction can be increased. 
In [1], the authors proposed a greedy mechanism 
for VM provisioning and VM allocation in a cloud 
computing environment. In this algorithm, a dynamic 
VM provisioning and allocation problem for an 
auction-based model is formulated and a promising 
result in terms of revenue of the cloud providers 
is achieved. A detailed survey on some scheduling 
algorithms and resource scheduling based on 
service level agreements on cloud computing is done 
in [13]. Merits and demerits of the algorithms are 
also explained.

Background knowledge
I. 	 Some basic terminologies
•	 Cloudlets: Cloudlet is a representation of 

task/job/process in CloudSim framework. 
It takes the job and submits to CloudSim. 
Device🡪Cloudlet🡪Cloud.

•	 Virtual Machines (VMs): It runs inside a Host, 
sharing hostList with other VMs. It processes 
cloudlets. This processing happens according 
to a resource allocation policy, defined by the 
CloudletScheduler. Each VM has an owner, which 
can submit cloudlets to the VM to be executed.

•	 Hosts: It is a physical entity in the cloud 
datacenter. It can be maintained through the 
hostList in Cloudsim.

•	 Datacenters: Datacenter class is a Cloud 
Resource whose hostList are virtualized. It deals 
with the processing of VM queries (i.e., handling 

of VMs) instead of processing Cloudlet-related 
queries.

•	 Cloud users: This is end users of the cloud 
services.

•	 Datacenter Brokers: Datacenter Broker 
represents a broker acting on behalf of a user. 
It hides VM management, as VM creation, 
submission of cloudlets to these VMs and 
destruction of VMs.

•	 Processing Element (PE): Number of CPUs or 
cores assigned to the virtual machines.

•	 Million Instructions Per Second (MIPS): It 
is a unit to represent the processing/execution 
capability of the PE/CPU.

•	 Bandwidth (BW): It is a unit to represent the 
communication/interactive capability of VMs.

II. Traditional Algorithms:
There are many different existing resource 
allocation algorithms. The most common traditional 
algorithms are First Come First Serve (FCFS) and 
Shortest Cloudlet First (SClF) algorithms. These 
two traditional resource allocation or scheduling 
algorithms are explained below.

•	 First Come First Serve (FCFS) Algorithm: This 
is the simplest algorithm in which cloudlets are 
allocated to the available VMs in the order in 
which they arrive. It aims to allocate the cloudlets 
with the least waiting time. FCFS mechanism is 
already available in the CloudSim platform. One 
of the disadvantages of this algorithm is that it is 
non-preemptive.

•	 Shortest Cloudlet First (SClF) Algorithm: This 
algorithm aims to allocate the available VMs to 
the cloudlet having a minimum length. In this 
algorithm first cloudlets ascended in the order 
of their cloudlet length and they are allocated 
to the available VMs in an FCFS manner. One of 
the disadvantages of this algorithm is that the 
waiting time of those cloudlets having greater 
cloudlet lengths may become very large.

Proposed Algorithm
Let us assume that our proposed resource allocation 
algorithm in a cloud environment is as VM = 
{VM1,VM2, . . . VMm} be the set of m virtual machines. 
T = {T1, T2, . . ., Tn} be the set of n cloudlets (tasks). 
All the machines are unrelated and parallel and are 

3

Singh: A Novel Greedy Based Algorithm for Resource Allocation in Cloud C

Published by Impressions@MAHE, 2020



Sunil Kumar et al: A Novel Greedy Based Algorithm for Resource Allocation in Cloud Computing Environment

4Manipal Journal of Science and Technology | June 2020 | Volume 5 | Issue 1

denoted as R in the model. npmtn: Non-preemptive 
cloudlets that mean the processing of that cloudlet on 
a virtual machine cannot be interrupted (assuming 
that failure does not occur). We denote the finishing 
time of a cloudlet Ti by CTi. Our aim is to reduce the 
makespan which can be denoted as CTmax. So, our 
proposed Greedy model is R|npmtn|CTmax.

In our new algorithm, we make some assumptions. 
All the cloudlets are assumed to be independent of 
each other; i.e., there is no data dependency between 
the cloudlets, they can be executed in parallel using 
the available resources (VMs) in any order. It is also 
assumed that there is no limitation on the number of 
resources (VMs) that can be provided by the cloud 
provider. Lastly, the output size of all the cloudlets is 
also assumed to be known in advance.

Our new Greedy-based VM allocation algorithm 
mainly consists of three basic steps viz. classification 
of cloudlets into two categories, allocation of 
cloudlets of different categories to their respective 
VMs by using our new proposed algorithm, 
comparing the performance metrics with traditional 
techniques like FCFS and SClF. Detail algorithm is 
explained below:

1.	 Based on the attributes of the submitted 
cloudlets, cloudlets are pre-processed to 
classify into two different categories: Class-I 
(Computational type Cloudlets) and Class-II 
(Interactive type Cloudlets). Computational type 
Cloudlets can be efficiently run on high capacity 
VMs while Interactive type Cloudlets can be run 
efficiently on high bandwidth (communication 
bandwidth means latency) VMs.

2.	 Computational type cloudlets and Interactive 
type cloudlets are descended in the order of 
their expected execution time and expected 
bandwidths respectively. Expected Execution 
Time (ExpEt) and Expected Bandwidth (ExpBW) 
of the cloudlets are calculated by using the 
following relations.

4.	 Computational type cloudlets are submitted to 
these descended VMs, and they are executed. 
While doing so, cloudlets having larger Expected 
Execution Time (ExpEt) are assigned to high 
capacity VMs and cloudlets having smaller 
Expected Execution Time (ExpEt) are assigned 
to low capacity VMs.

5.	 Again, on the basis of the bandwidths of the VMs, 
VMs are descended.

6.	 Interactive type cloudlets are then submitted 
to these reordered VMs, and they are also 
executed. While doing so, highly interactive 
cloudlets are assigned to VMs having high 
bandwidths (communication bandwidths) and 
less interactive cloudlets to VMs having lesser 
bandwidths.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸ℎ

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑉𝑉𝑉𝑉                                  (1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶 +𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶                        (2) 

 

𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ                (3) 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗 ∗   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 + 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗  

 

𝑇𝑇𝑇𝑇ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  =   
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                 (4) 

 

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛{𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗|𝑓𝑓𝑓𝑓 ∈ 𝑇𝑇𝑇𝑇 , 𝑓𝑓𝑓𝑓 =  1, 2, . . .𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 ∈ 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀, 𝑛𝑛𝑛𝑛 =  1, 2, . . .𝑀𝑀𝑀𝑀} 

  
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸                  (6) 

 

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶          (7) 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =   
∑𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖=1 (𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿  

 

 

Fig 1: Architectural representation of proposed scheduling algorithm

ExpBW = No.of PEs*Cloudlet length+Input file size+Output file size                        

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸ℎ

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑉𝑉𝑉𝑉                                  (1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶 +𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶                        (2) 

 

𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ                (3) 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗 ∗   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 + 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗  

 

𝑇𝑇𝑇𝑇ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  =   
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                 (4) 

 

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛{𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗|𝑓𝑓𝑓𝑓 ∈ 𝑇𝑇𝑇𝑇 , 𝑓𝑓𝑓𝑓 =  1, 2, . . .𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 ∈ 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀, 𝑛𝑛𝑛𝑛 =  1, 2, . . .𝑀𝑀𝑀𝑀} 

  
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸                  (6) 

 

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶          (7) 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =   
∑𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖=1 (𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿  

 

 

(1)

(2)

(3)

3.	 Next, the available VMs are descended in the 
order of their capacities. The capacity of a VM is 
given by the following relation.

4

Manipal Journal of Science and Technology, Vol. 5 [2020], Iss. 1, Art. 6

https://impressions.manipal.edu/mjst/vol5/iss1/6



Sunil Kumar et al: A Novel Greedy Based Algorithm for Resource Allocation in Cloud Computing Environment

5 Manipal Journal of Science and Technology | June 2020 | Volume 5 | Issue 1

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸ℎ

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑉𝑉𝑉𝑉                                  (1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶 +𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶                        (2) 

 

𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ                (3) 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗 ∗   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 + 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗  

 

𝑇𝑇𝑇𝑇ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  =   
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                 (4) 

 

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛{𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗|𝑓𝑓𝑓𝑓 ∈ 𝑇𝑇𝑇𝑇 , 𝑓𝑓𝑓𝑓 =  1, 2, . . .𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 ∈ 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀, 𝑛𝑛𝑛𝑛 =  1, 2, . . .𝑀𝑀𝑀𝑀} 

  
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸                  (6) 

 

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶          (7) 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =   
∑𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖=1 (𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿  

 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸ℎ

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑉𝑉𝑉𝑉                                  (1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶 +𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶                        (2) 

 

𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ                (3) 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗 ∗   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 + 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗  

 

𝑇𝑇𝑇𝑇ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  =   
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                 (4) 

 

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛{𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗|𝑓𝑓𝑓𝑓 ∈ 𝑇𝑇𝑇𝑇 , 𝑓𝑓𝑓𝑓 =  1, 2, . . .𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 ∈ 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀, 𝑛𝑛𝑛𝑛 =  1, 2, . . .𝑀𝑀𝑀𝑀} 

  
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸                  (6) 

 

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶          (7) 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =   
∑𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖=1 (𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿  

 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸ℎ

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑉𝑉𝑉𝑉                                  (1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶 +𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶                        (2) 

 

𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ                (3) 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗 ∗   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 + 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗  

 

𝑇𝑇𝑇𝑇ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  =   
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                 (4) 

 

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛{𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗|𝑓𝑓𝑓𝑓 ∈ 𝑇𝑇𝑇𝑇 , 𝑓𝑓𝑓𝑓 =  1, 2, . . .𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 ∈ 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀, 𝑛𝑛𝑛𝑛 =  1, 2, . . .𝑀𝑀𝑀𝑀} 

  
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸                  (6) 

 

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶          (7) 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =   
∑𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖=1 (𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿  

 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸ℎ

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑉𝑉𝑉𝑉                                  (1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶 +𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶                        (2) 

 

𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ                (3) 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗 ∗   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 + 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗  

 

𝑇𝑇𝑇𝑇ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  =   
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                 (4) 

 

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛{𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗|𝑓𝑓𝑓𝑓 ∈ 𝑇𝑇𝑇𝑇 , 𝑓𝑓𝑓𝑓 =  1, 2, . . .𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 ∈ 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀, 𝑛𝑛𝑛𝑛 =  1, 2, . . .𝑀𝑀𝑀𝑀} 

  
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸                  (6) 

 

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶          (7) 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =   
∑𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖=1 (𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿  

 

 

7.	 Finally, with different input sets, the performance 
metrics are calculated by simulating our newly 
proposed algorithm, and they are compared 
with traditional techniques: -FCFS and SClF.

Experimentation
I. 	 Performance metrics
Throughput, makespan and mean execution time of 
the cloudlets are used as performance metrics in this 
new Greedy-based VM allocation algorithm. This 
algorithm uses the following two well-known QoS 
parameters makespan and means execution time of 
cloudlets.

•	 Throughput: Throughput is the rate of 
successful execution of the cloudlets. In other 
words, it can be defined as the total number of 
successfully executed cloudlets per unit time. 
For the better utilization of the resources, 
throughput should be made higher.

•	 Makespan: Makespan is a measure of resource 
utilization and throughput. For better utilization 
of the resources and to maximize throughput, 
makespan should be minimized. Makespan is 
defined as the overall cloudlet completion time. 
We denote the completion time of cloudlet Ti on 
VMj as CTij.

•	 Mean execution time: It is the average of the 
execution time of all the cloudlets. It is given by 
the relation:

(4)

(5)

(6)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸ℎ

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑉𝑉𝑉𝑉                                  (1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶 +𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶                        (2) 

 

𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶 =  𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ                (3) 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗 ∗   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 + 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗  

 

𝑇𝑇𝑇𝑇ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  =   
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                 (4) 

 

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸ℎ𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛{𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗|𝑓𝑓𝑓𝑓 ∈ 𝑇𝑇𝑇𝑇 , 𝑓𝑓𝑓𝑓 =  1, 2, . . .𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 ∈ 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀, 𝑛𝑛𝑛𝑛 =  1, 2, . . .𝑀𝑀𝑀𝑀} 

  
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸                  (6) 

 

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶          (7) 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =   
∑𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖=1 (𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿  

 

 

(8)

(7)

II. Experimental results
This new algorithm is implemented in the 
CloudSim-3.0.3 platform. CloudSim is a Java based 
framework that can be used to model and simulate 
cloud computing environments. While simulating 
this algorithm, we add new classes and methods 
according to our needs; Cloudlet class and VM class 
are also extended for calculating new parameters such 
as Expected Execution Time, Expected Bandwidth, 
Capacities of the VMs and other performance 
metrics. This new algorithm is simulated three times 
using different input parameters.
We use one data center that can run multiple hosts 
with host parameters given in Table I.
Table I: host parameters

Parameters Values

MIPS 15000

RAM 4096

STORAGE 1000000

BW 10000

•	 Observation no. 1: Here two hosts and three 
VMs are used. The hosts and VM parameters are 
given below:

No. of Hosts: 2
No. of Processing elements of Host#0: 2
No. of Processing elements of Host#1: 4
No. of VMs: 3

Table II: VM Parameters For OBS.1

VM ID MIPS NO. OF 
PES RAM BW SIZE VMM

0 2000 1 512 1000 10000 Xen

1 1900 3 512 1100 10000 Xen

2 1800 2 512 1400 10000 Xen

Using the above parameters, FCFS, SClF and the 
new proposed algorithm is simulated by varying the 
number of cloudlets. The simulation result is shown 
below:

Table III: Results Of Observation No.1

No. of
Cloudlets

Makespan Mean Execution Time Throughput

FCFS SCLF Proposed FCFS SCLF Proposed FCFS SCLF Proposed

10 30.43 32.07 12.48 13.05 13.96 6.31 0.33 0.31 0.8

20 61.07 49.82 19.92 25.62 24.04 11.68 0.33 0.4 1

30 86.87 69.89 34.53 38.31 36.17 17.78 0.35 0.43 0.87

40 125.34 111.22 45.13 53.09 49.37 23.01 0.32 0.36 0.89

50 147.58 129.31 59.14 63.59 58.21 28.43 0.34 0.39 0.85

5

Singh: A Novel Greedy Based Algorithm for Resource Allocation in Cloud C

Published by Impressions@MAHE, 2020



Sunil Kumar et al: A Novel Greedy Based Algorithm for Resource Allocation in Cloud Computing Environment

6Manipal Journal of Science and Technology | June 2020 | Volume 5 | Issue 1

•	 Observation no. 2: Next, number of hosts and 
number of VMs are increased. The hosts and VM 
parameters are given below:

No. of Hosts: 3
No. of Processing elements of Host#0: 3
No. of Processing elements of Host#1: 5
No. of Processing elements of Host#2: 2
No. of VMs: 6

Using the above parameters, FCFS, SClF and the 
new proposed algorithm is simulated by varying the 
number of cloudlets. The simulation result is shown 
below:

Table IV: VM Parameters For OBS.2

VM 
ID MIPS NO. OF 

PES RAM BW Size VMM

0 2000 1 512 1000 10000 Xen

1 1900 3 512 1100 10000 Xen

2 1800 2 512 1400 10000 Xen

3 2000 3 512 1200 10000 Xen

4 1900 1 512 1200 10000 Xen

5 1800 1 512 1400 10000 Xen

Table V: Results Of Observation No. 2

N
o.

 o
f C

lo
ud

le
ts

MAKESPAN MEAN EXECUTION 
TIME

THROUGHPUT

FC
FS

SC
lF

Pr
op

os
ed

FC
FS

SC
lF

Pr
op

os
ed

FC
FS

SC
lF

Pr
op

os
ed

10 15.27 11.45 8.18 6.53 6.55 4.44 0.66 0.87 1.22

20 41.14 29.97 18.98 14.34 15.43 7.69 0.49 0.67 1.05

30 49.47 54.2 29.89 21.71 21.6 10.54 0.61 0.55 1

40 68.25 51.27 37.47 27.04 26.76 13.97 0.59 0.78 1.07

50 83.91 72.42 42.41 35.29 34.57 16.83 0.6 0.69 1.18

Fig 2: Performance Comparisons among FCFS, SCIF and Proposed Algorithm

Fig 3: Performance Comparison among FCFS, SCIF and Proposed Algorithm

6

Manipal Journal of Science and Technology, Vol. 5 [2020], Iss. 1, Art. 6

https://impressions.manipal.edu/mjst/vol5/iss1/6



Sunil Kumar et al: A Novel Greedy Based Algorithm for Resource Allocation in Cloud Computing Environment

7 Manipal Journal of Science and Technology | June 2020 | Volume 5 | Issue 1

•	 Observation no. 3: Here, three hosts are used. 
The number of cloudlets is fixed to fifty. And by 
varying the number of VMs employed, FCFS, SClF 
and the new proposed algorithm is simulated. 
Host parameters, VM parameters and simulation 
results are given below:

No. of Hosts: 3
No. of Processing elements of Host#0: 2
No. of Processing elements of Host#1: 1
No. of Processing elements of Host#2: 3
No. of Cloudlets: 50

Conclusion And Future Directions
Resource allocation algorithms in a cloud computing 
environment aim to minimize the execution time 
and to maximize throughput with better utilization 
of the available resources. On the basis of these 
simulation results, it is observed that this newly 
proposed resource allocation algorithm works 
better than traditional scheduling techniques like 
FCFS and SClF. The makespan, overall maximum 
completion time and mean execution time of this 
new algorithm are less than those of the traditional 

Table VI: VM Parameters Of Observation No. 3

VM 
ID MIPS NO. 

OF PES RAM BW SIZE VMM

0 2000 1 512 1000 10000 Xen

1 1900 3 512 1100 10000 Xen

2 1800 2 512 1400 10000 Xen

3 2000 3 512 1200 10000 Xen

4 1900 1 512 1200 10000 Xen

5 1800 1 512 1400 10000 Xen

6 2000 3 512 1100 10000 Xen

7 1900 2 512 1000 10000 Xen

8 1800 3 512 1100 10000 Xen

Table VII: Results Of Observation No. 3

#VMs VM-ID
MAKESPAN MEAN EXECUTION TIME THROUGHPUT

FCFS SClF Proposed FCFS SClF Proposed FCFS SClF Proposed

2 0,1 192.8 188.9 93.13 1.76 91.52 45.47 0.26 0.26 0.54

4 0,1,2,3 88.94 99.99 41.16 37.64 39.82 19.12 0.56 0.5 1.21

7 0,1,2,3,4,5,6 70.7 64.63 37.48 26.57 28.07 13.66 0.71 0.77 1.33

8 0,1,2,3,4,5,6,7 50.74 56.02 33.29 21.67 23.88 11.62 0.99 0.89 1.5

9 0,1,2,3,4,5,6,7,8 68.45 56.45 32.4 25.92 19.78 9.91 0.73 0.89 1.54

ones, throughput is also better than these traditional 
algorithms, which means there is a better utilization 
of the resources. There are also certain topics that 
should be considered so that this newly proposed 
algorithm can be further improved. We need to check 
the best criteria of classification of the cloudlets into 
different classes and parameters that can be taken 
into account for proper resource allocation.

References
[1]	 M. M. Nejad, L. Mashayekhy, and D. Grosu, 

“Truthful Greedy Mechanisms for Dynamic 

Fig 4: Performance Comparison among FCFS, SCIF and Proposed Algorithm

7

Singh: A Novel Greedy Based Algorithm for Resource Allocation in Cloud C

Published by Impressions@MAHE, 2020



Sunil Kumar et al: A Novel Greedy Based Algorithm for Resource Allocation in Cloud Computing Environment

8Manipal Journal of Science and Technology | June 2020 | Volume 5 | Issue 1

Virtual Machine Provisioning and Allocation in 
Clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 
26, no. 2, pp. 594–603, Feb. 2015, doi: 10.1109/
TPDS.2014.2308224.

[2]	 R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. 
De Rose, and R. Buyya, “CloudSim: a toolkit for 
modeling and simulation of cloud computing 
environments and evaluation of resource 
provisioning algorithms,” Softw. Pract. Exp., vol. 
41, no. 1, pp. 23–50, Jan. 2011, doi: 10.1002/
spe.995.

[3]	 J. Li, L. Feng, and S. Fang, “An Greedy-Based Job 
Scheduling Algorithm in Cloud Computing,” J. 
Softw., vol. 9, no. 4, Apr. 2014, doi: 10.4304/
jsw.9.4.921-925.

[4]	 K. Somasundaram and S. Radhakrishnan, 
“Task Resource Allocation in Grid using Swift 
Scheduler,” Int. J. Comput. Commun. Control, 
vol. 4, no. 2, p. 158, Jun. 2009, doi: 10.15837/
ijccc.2009.2.2423.

[5]	 M. Paul, D. Samanta, G. Sanyal, and W. Bengal, 
“Dynamic job Scheduling in Cloud Computing 
based on horizontal load balancing,” Int. J. 
Comput. Technol. Appl., vol. 2, no. 5, pp. 1552–
1556, 2011.

[6]	 S. Sindhu and S. Mukherjee, “Efficient Task 
Scheduling Algorithms for Cloud Computing 
Environment,” 2011, pp. 79–83.

[7]	 Vijindra and S. Shenai, “Survey on Scheduling 
Issues in Cloud Computing,” Procedia Eng., 
vol. 38, pp. 2881–2888, 2012, doi: 10.1016/j.
proeng.2012.06.337.

[8]	 U. Bhoi and P. Ramanuj, “Enhanced Max-min Task 
Scheduling Algorithm in Cloud Computing,” Int. 
J. Appl. or Innov. …, vol. 2, no. 4, pp. 259–264, 
2013, [Online]. Available: http://ijaiem.org/
Volume2Issue4/IJAIEM-2013-04-30-130.pdf.

[9]	 Huankai Chen, F. Wang, N. Helian, and G. 
Akanmu, “User-priority guided Min-Min 
scheduling algorithm for load balancing in 
cloud computing,” in 2013 National Conference 
on Parallel Computing Technologies 
(PARCOMPTECH), Feb. 2013, pp. 1–8, doi: 
10.1109/ParCompTech.2013.6621389.

[10]	 D. B. L.D. and P. Venkata Krishna, “Honey bee 
behavior inspired load balancing of tasks in 
cloud computing environments,” Appl. Soft 
Comput., vol. 13, no. 5, pp. 2292–2303, May 
2013, doi: 10.1016/j.asoc.2013.01.025.

[11]	 H. A. Ravani, H. A. Bheda, and V. J. Patel, 
“Genetic Algorithm Based Resource Scheduling 
Technique in Cloud Computing,” vol. 1, no. 7, pp. 
168–174, 2013.

[12]	 P. Salot, “A SURVEY OF VARIOUS SCHEDULING 
ALGORITHM IN CLOUD COMPUTING 
ENVIRONMENT,” Int. J. Res. Eng. Technol., 
vol. 02, no. 02, pp. 131–135, Feb. 2013, doi: 
10.15623/ijret.2013.0202008.

[13]	 R. D. L. N. Srinivasu, “A Review and Analysis of 
Task Scheduling Algorithms in Different Cloud 
Computing Environments,” Int. J. Comput. Sci. 
Mob. Comput., vol. 4, no. 12, pp. 235–241, 2015.

8

Manipal Journal of Science and Technology, Vol. 5 [2020], Iss. 1, Art. 6

https://impressions.manipal.edu/mjst/vol5/iss1/6


	A Novel Greedy Based Algorithm for Resource Allocation in Cloud Computing Environment
	Recommended Citation

	A Novel Greedy Based Algorithm for Resource Allocation in Cloud Computing Environment

