Abstract ID:MRCHS060

Application of Muscle Ultrasound to Evaluate Morphological Changes of Lower Limb Muscles in Type 2 Diabetes Mellitus with Diabetic Peripheral Neuropathy: A Preliminary Study

Authors: Mr. Sharath S, Dr.Rajagopal Kadavigere, Dr. G Arun Maiya

Presented by

Mr. Sharath S

Assistant Professor (Senior Scale) Dept. of Medical Imaging Technology Manipal College of Health Professions, MAHE, Manipal

INTRODUCTION

- Type II Diabetes Mellitus (DM) one of the major health challenge of 21st century.(Parasoglou P et al.,2017)
- A significant consequence of Diabetic Peripheral Neuropathy (DPN) on the skeletal muscle is the accelerated loss of muscle mass, compared to DM alone. (Parasoglou P et al.,2017)
- Therefore, an accurate estimate of the muscle mass is important for the diabetic patients. (Takai Y et al., 2013)

Application of muscle ultrasound to evaluate morphological changes of lower limb muscles in Type 2 Diabetes Mellitus with Diabetic Peripheral Neuropathy

OBJECTIVE

To evaluate the morphological changes of lower limb muscles in Type 2 Diabetes Mellitus with peripheral neuropathy using muscle ultrasonography

METHODOLOGY

Approval was obtained from Institutional Research Committee MCHP and Institutional Ethics Committee KMC Manipal (IEC-496/2021)

A total of 20 participants who were clinically diagnosed with type 2 diabetes were recruited

An assessment of diabetic peripheral neuropathy by a physiotherapist was conducted

An ultrasound scan of the lower limb muscles was performed

METHODOLOGY

Anterior Quadriceps Muscle

Subcutaneous Fat Rectus Femoris Vastus Intermedius Thigh Muscle Thickness

Ankle Dorsiflexor

Tibialis Anterior Extensor Hallucis Longus Extensor Digitorum Longus

Foot Muscle:

Extensor digitorum brevis Abductor hallucis brevis

Table 1:- Demographic Characteristics of the subjects

Characteristics	Mean±SD
Age	65.25±9.94
Height	161.98±12.58
Weight	66.81±12.10
BMI	24.63±4.41
Duration Of Diabetes	19.0±11.76
Hba1c (%)	8.12±1.47
VPT_R	26.36±17.69
VPT_L	27.46±16.88
Mono-filament_R	3.50±1.90
Mono-filament_L	4.15±2.00

* VPT-Vibration Perception Test, HbA1C- Glycated Hemoglobin

Table 2:- Association Between Duration Of Diabetes Mellitus and Anterior Quadriceps Muscles Thickness

Anterior Quadriceps Muscles								
Duration of Diabetes (Years)	Subcutaneous fat Thickness (Cm)Rectus Femoris Thickness (Cm)		Femoris kness m)	Vastus Intermedius Thickness (Cm)		Thigh Muscle Thickness (Cm)		
	Right	Left	Right	Left	Right	Left	Right	Left
1_5	1.04 ± 0.95	1.06 ± 0.15	1.32 ± 0.40	1.44 ± 0.08	1.34 ± 0.01	1.37 ±0.21	2.73 ±0.48	2.84 ± 0.37
6_10	1.17 ± 1.01	0.81 ± 0.62	1.32 ± 0.28	1.17 ± 0.27	$1.36\pm\!0.39$	1.44 ±0.20	2.72 ±0.66	2.71 ±0.47
11_15	0.82 ± 0.37	0.81 ±0.37	1.06 ±0.32	1.05 ± 0.39	0.98 ± 0.26	1.06 ±0.22	2.09 ±0.61	2.14 ±0.50
16 & Above	0.62 ± 0.17	0.56 ± 0.17	1.09 ±0.33	1.12 ± 0.21	1.24 ± 0.39	1.36 ± 0.37	2.40 ± 0.64	28.69 ±0.67

Table 3:- Association Between Duration Of Diabetes Mellitus And Ankle Dorsiflexor Muscle Thickness

Ankle Dorsiflexor Muscles								
Duration of Diabetes (Years)	Extensor Digitorum Longus-thickness (Cm)Extensor Hallucis Longus- thickness (Cm)		Tibialis Anterior thickness (Cm)		Tibialis Anterior-cross Section Area (Cm)			
	Right	Left	Right	Left	Right	Left	Right	Left
1_5	2.03 ± 0.28	2.02 ± 0.35	0.61 ± 0.26	$0.56\pm\!\!0.17$	$2.39\pm\!\!0.26$	$2.66\pm\!0.19$	5.47 ±0.89	7.28 ± 1.55
6_10	1.72 ± 0.44	1.69 ±0.34	1.01 ±0.49	0.57 ± 0.21	$2.36\pm\!0.38$	2.50 ± 0.30	5.99 ± 1.44	5.99 ±1.11
11_15	1.40 ± 0.42	1.59 ±0.69	0.63 ± 0.18	0.60 ± 0.17	2.32 ± 0.34	2.29 ± 0.33	5.65 ±1.35	5.51 ±1.03
16 & Above	1.55 ±0.56	1.55 ± 0.24	0.88 ± 0.47	0.93 ± 0.47	2.46 ± 0.34	2.45 ± 0.35	5.55 ±1.69	6 ₃ 09 ±1.66

Table 4:- Association Between Duration Of Diabetes Mellitus And Foot Muscle Thickness

Foot Muscles						
Duration of Diabetes (Years)	Extensor Digitorum Brevis-thickness (Cm)		Abductor Halluci (C	s Brevis-thickness m)		
	Right	Left	Right	Left		
1_5	0.59 ± 0.33	0.62 ± 0.20	$0.90\pm\!\!0.08$	1.01 ± 0.03		
6_10	0.60 ± 0.97	0.64 ± 0.07	1.08 ±0.30	1.15 ±0.37		
11_15	0.53 ±0.17	0.62 ±019	0.83 ±0.18	0.77 ±0.23		
16 & Above	0.64 ± 0.14	0.61 ± 0.16	0.94 ± 0.25	1.05 ±0.28		

CONCLUSION

According to the study results we have noted a clinically significant *reduction* in the *thickness of the lower limb muscles* with an *increase in the duration of Type 2 Diabetes Mellitus with DPN*.

• In order to prevent long-term complications associated with Type 2 Diabetes Mellitus, *ultrasound can be considered as a reliable screening tool to monitor the morphology of the muscles*.

CLINICAL SIGNIFICANCE

• With *ultrasound screenings*, *early changes* in muscle morphology can be identified and recognized, reducing the risk of negative outcomes such as impaired balance, altered gait, and decreased functional capacity.

• Muscle characteristics can be *quantitatively* assessed using ultrasound.

• Ultrasound is a relatively *cost-effective* and *safe diagnostic tool* that consumes *less time* than other technologies

RESEARCH OUTPUT

• Manuscript titled "Assessment of Lower Limb Muscle Morphology with Ultrasound in Diabetic Peripheral Neuropathy" has been submitted to journal of Clinical Epidemiology and Global Health(CEGH-S-23-00430) (Q2)

REFERENCES

1. Stringer HJ, Wilson D. The Role of Ultrasound as a Diagnostic Tool for Sarcopenia. J frailty aging. 2018;7(4):258–61.

2. Balducci, Stefano, Sacchetti, Massimo, Haxhi, Jonida, Orlando, Giorgio, D'Errico, Valeria, Fallucca, Sara, Menini, Stefano, Pugliese G. Physical Exercise as therapy for type II diabetes. Diabetes Metab Res Rev [Internet]. 2014;32(30):13–23. Available from: http://libweb.anglia.ac.uk/

3. Parasoglou P, Rao S, Slade JM, Author CT. Declining Skeletal Muscle Function in Diabetic Peripheral Neuropathy HHS Public Access Author manuscript. Clin Ther [Internet]. 2017;39(6):1085–103. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503477/pdf/nihms873526.pdf

4. Takai Y, Ohta M, Akagi R, Kato E, Wakahara T, Kawakami Y, et al. Validity of ultrasound muscle thickness measurements for predicting leg skeletal muscle mass in healthy Japanese middle-aged and older individuals. J Physiol Anthropol. 2013;32(1):1–5.

5. Ibrahim HR. Diagnostic value of shear wave ultrasound elastography of tibial nerve in patients with diabetic peripheral neuropathy. Egypt J Radiol Nucl Med [Internet]. 2022;53(1). Available from: https://doi.org/10.1186/s43055-022-00779-z

MANJEAU ACADEMY of HIGHER EDUCATION

(Institution of Eminence Deemed to be University)

Thank You

A REAL PROPERTY AND A REAL

Puspired BY LIFE

Figure 2a. Tibialis anterior

2b. Extensor Digitorum Longus

Figure 3a.Abductor Hallucis Brevis

3b. Extensor Digitorum Brevis