

Abstract ID: MRCHS086

In-silico analysis and pharmacophore modeling of anticancer HDAC-Topo dual inhibitor

Ram G Ram¹• Bipasa Dey¹ • Padmini Pai² • Manasa Gangadhar Shetty² • Kampa Sundara Babitha^{2*}

¹Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India -576104 ²Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India -576104

MANIPAL

constituent unit of MAHE, Manipal)

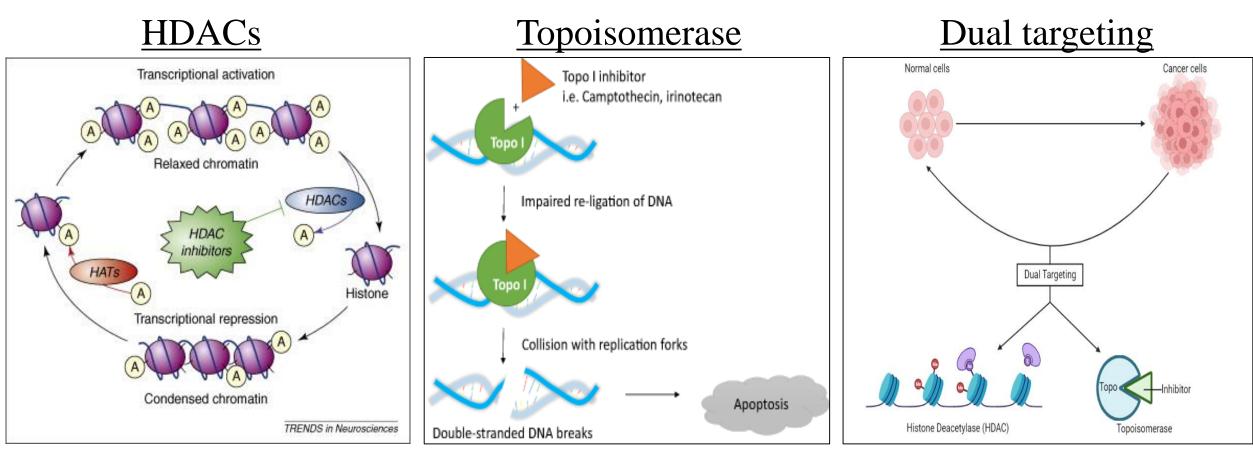
Cancer

INTRODUCTION

A condition in which abnormal cells divide uncontrollably and destroy body tissue (Wu et al., 2006)

Anticancer drugs

•Anti-cancer drugs or treatments are the methods to prevent or stop cancer from developing (Taghipour et al., 2022)


In 2020 nearly 10 million people died because of cancer, making cancer a prime cause of worldwide death

Chemotherapy, Immunotherapy, Surgery, Hormonal treatments, Radiotherapy, Hyperthermia, Bone marrow transplant

Fig 1. Different anti-cancer therapies

Fig 2. Function of HDACs

Fig 3. Function of TOPO Inhibitors

Fig 4. Dual targeting of HDAC and Topo in cancer cells

(Created using biorender)

Virtual screening and Drug discovery

PRX-00023 (Phase IIb)- Major depression

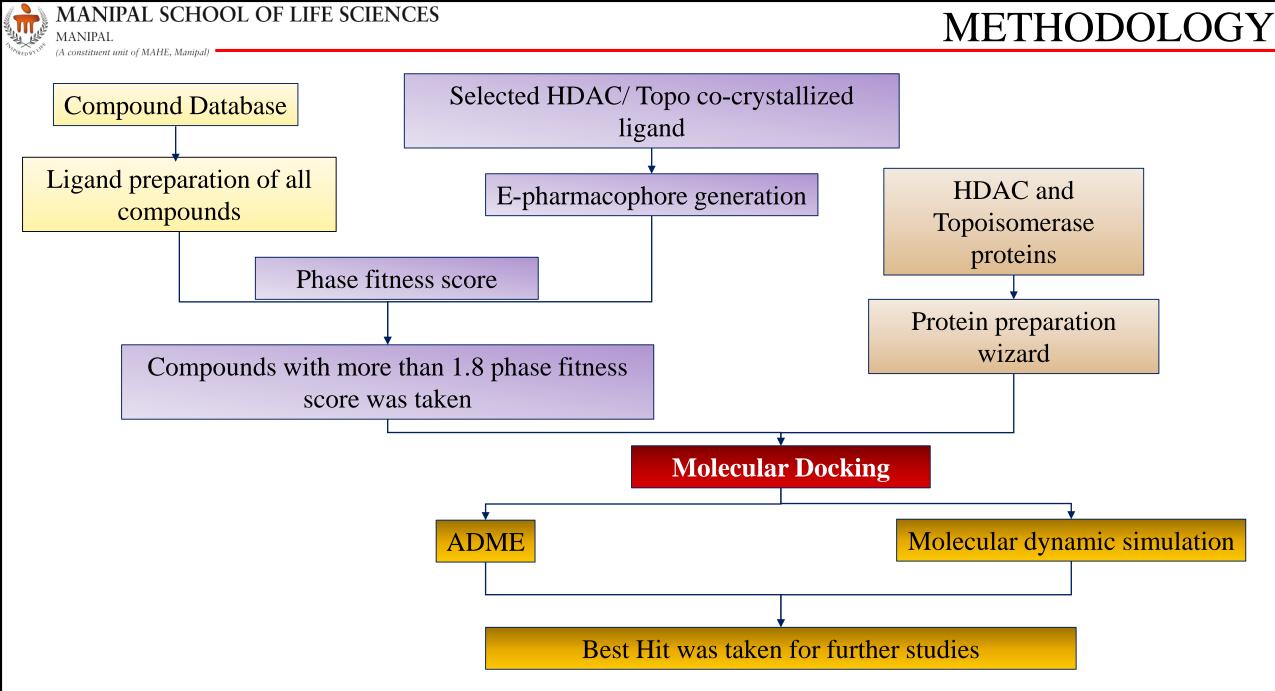
PRX-03140 (Phase IIb)-Alzheimer's disease

SC12267 (Phase IIa)- Rheumatoid arthritis

Cevoglitazar (Phase II)- PPAR- α / γ dual agonist

DMP450 (Phase II)- Inhibitor of HIV-1 protease

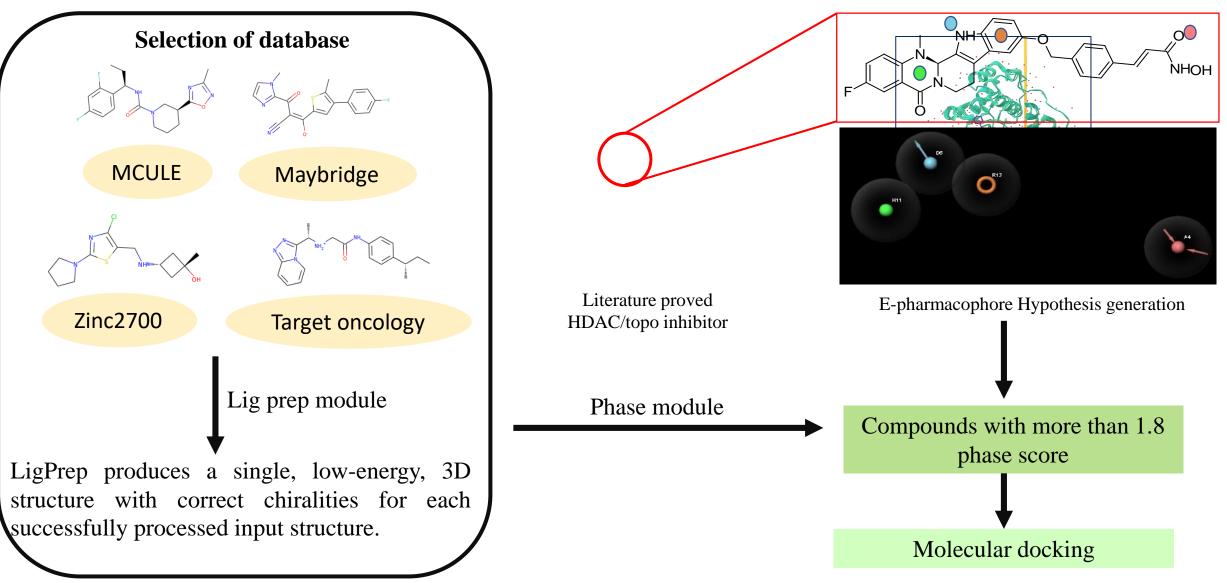
INTRODUCTION


"<u>In-silico</u>"

In silico methods include databases, quantitative structure-activity relationships, pharmacophores, homology models and other molecular modeling approaches, machine learning, data mining, network analysis tools and data analysis tools that use a computer.

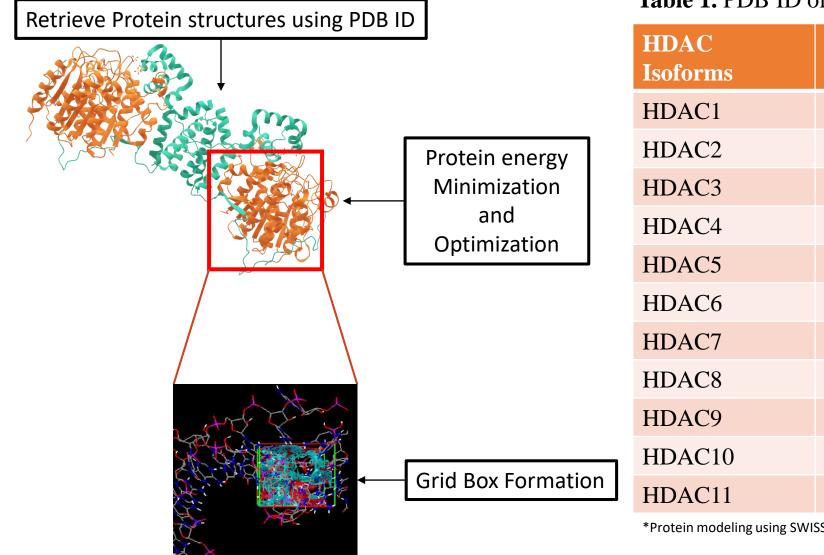
To design a potent HDAC-TOPO dual-inhibitor by pharmacophore modelling, virtual

screening and molecular docking techniques



MRC- 2023, Manipal Academy of Higher Education, Manipal

METHODOLOGY


Ligand preparation and E-pharmacophore generation

METHODOLOGY

constituent unit of MAHE, Manipal) **Protein Preparation**

Table 1. PDB ID of all the proteins which is used for docking

1	PDB ID	Topoisomerase	PDB ID 1EJ9		
ms		Topo 1			
21	4BXK	Торо 1	1SC7		
22	4LY1	Торо 2	5GWK		
23	4A69	Торо 2	4G0U		
24	2VQJ	L			
25	-*	H THE KA	X +		
26	3PHD				
27	3ZNR				
28	1T69				
29	_*				
210	6UII				
211	_*	\sim			

*Protein modeling using SWISS model

(A constituent unit of MAHE, Manipal)

Table 2. Docking score of best-hit compounds from all the databases against all HDAC isoforms and Topo 1 and 2 (kcal/mol)

Database	Compound Name	HDAC1	HDAC2	HDAC3	HDAC4	HDAC5	HDAC6	HDAC7	HDAC8	HDAC9	HDAC10	HDAC11	Topo1	Торо2
Target oncology	1060 (1A)	-0.565	-4.733	1.857	-4.16	-1.04	-1.354	-2.371	-3.091	-2.62	NA	NA	NA	-6.995
Maybridge	19098 (1B)	-2.339	-7.521	-0.667	-7.433	-2.977	-3.192	-7.201	-10.204	-4.054	-7.534	-4.365	-5.016	-9.834
	24579 (1C)	-2.188	-9.867	-2.002	-9.002	-4.794	-4.402	-7.433	-9.975	-4.785	-4.417	-5.897	-6.86	-8.446
	20086 (1D)	-4.286	<mark>-9.475</mark>	-7.179	<mark>-8.805</mark>	-3.984	-4.344	-7.924	-8.253	-5.323	-6.232	<mark>-9.871</mark>	<mark>-9.165</mark>	-13.192
zinc	40112 (1E)	-1.81	-11.5	-0.647	-6.869	-4.219	-1.52	-7.437	-11.18	-4.212	-6.342	-4.017	-7.243	-9.6
	36784 (1F)	-4.221	-10.585	-2.961	-6.768	-6.665	-3.531	-8.146	-10.15	-6.123	-6.615	-5.349	-7.603	-11.026
	49437 (1G)	-3.828	-7.918	-3.136	-7.605	-6.236	-3.688	-7.994	-5.861	-6.008	-7.064	-5.923	-9.495	-11.692
	55229 (1H)	-3.407	-7.239	-4.109	-9.244	-3.765	-5.37	-9.04	-5.44	-5.522	-6.503	-8.291	-9.512	-12.467
MCULE	95352 (1I)	-2.084	-6.014	-2.029	-6.844	-3.112	-3.038	-6.241	-6.338	-3.497	-6.091	-6.981	-6.206	-6.599
	82539 (1J)	-1.775	-8.514	-1.541	-6.343	-2.442	-3.375	-6.879	-8.916	-2.63	-7.686	-5.113	-3.907	-6.049
	32563 (1K)	-2.744	-7.921	-2.029	-8.228	-4.048	-4.903	-7.515	-9.16	-4.051	-7.612	-5.323	-6.272	-7.117
	SAHA	-2.04	-12.07	-2.23	-8.12	-3.93	-3.91	-8.19	-9.99	-2.90	-8.80	-7.49	NA	NA
	Etoposide	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-8.57
	Topothecan	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-8.02	NA

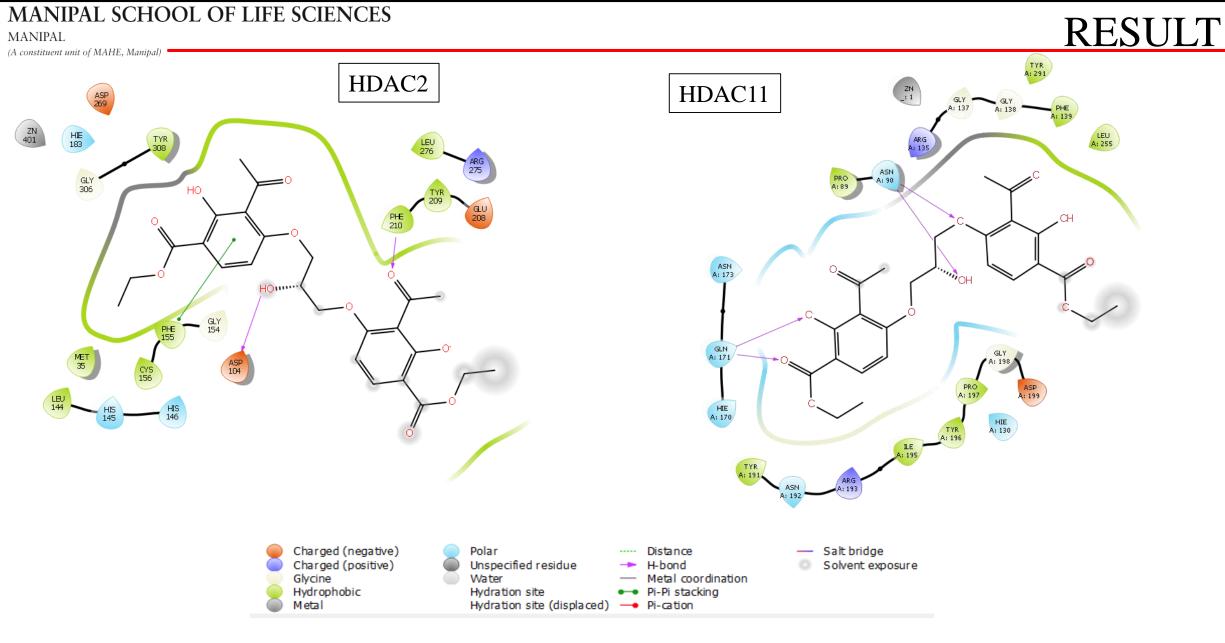
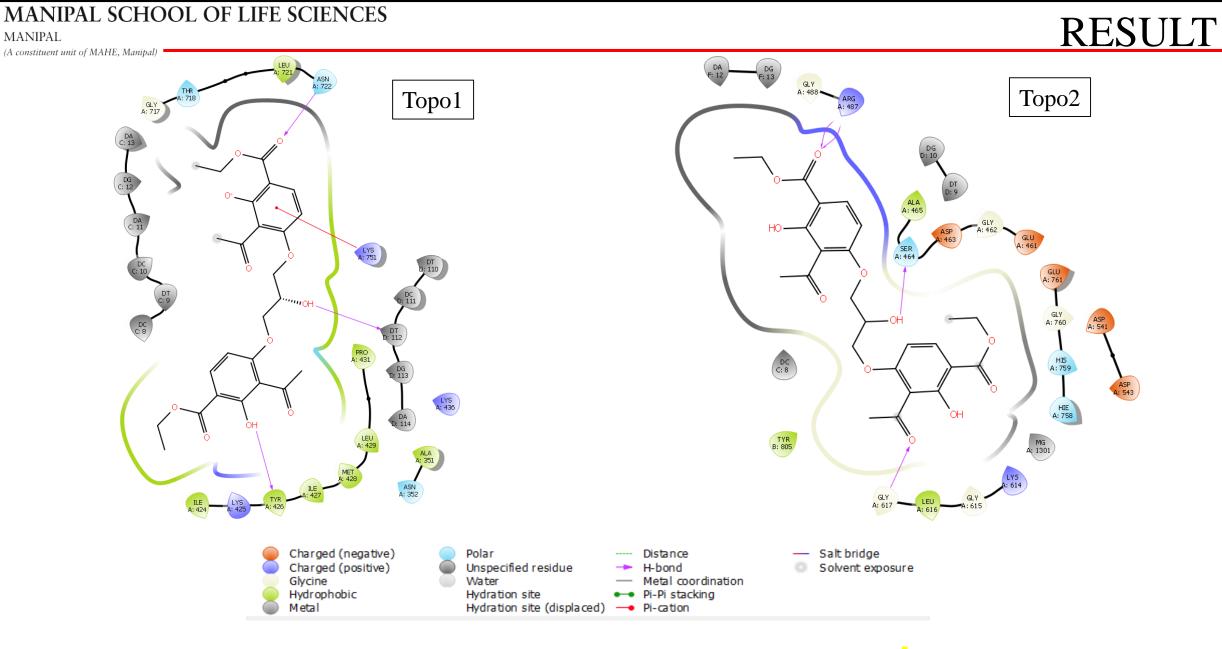
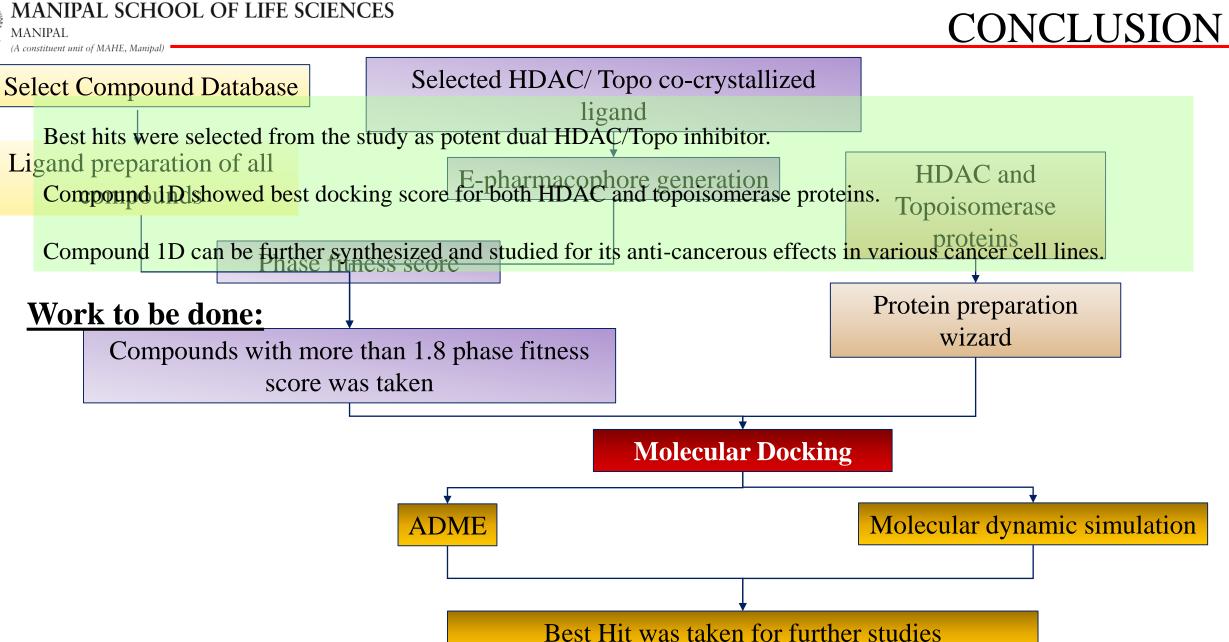




Fig 6. Ligand interaction diagram of compound 1D against HDAC 2 and 11

Fig 7. Ligand interaction diagram of compound 1D against Topo proteins

- Cappellacci, L., Perinelli, D. R., Maggi, F., Grifantini, M., & Petrelli, R. (2020). Recent Progress in Histone Deacetylase Inhibitors as Anticancer Agents. *Current Medicinal Chemistry*, 27, 2449–2493.
- Denny, W. A. (2004). Emerging DNA topoisomerase inhibitors as anticancer drugs. *Expert Opinion on Emerging Drugs*, 9, 105–133.
- 3. Nitiss, J. L. (2009). Targeting DNA topoisomerase II in cancer chemotherapy. *Nature Reviews Cancer*, *9*, 338–350.
- Pai, P., Kumar, A., Shetty, M. G., Kini, S. G., Krishna, M. B., Satyamoorthy, K., & Babitha, K. S. (2022). Identification of potent HDAC 2 inhibitors using E-pharmacophore modelling, structure-based virtual screening and molecular dynamic simulation. *Journal of Molecular Modeling*, 28, 119-133.
- 5. Taghipour, Y. D., Zarebkohan, A., Salehi, R., Rahimi, F., Torchilin, V. P., Hamblin, M. R., & Seifalian, A. (2022). An update on dual targeting strategy for cancer treatment. *Journal of Controlled Release*, *349*, 67–96.
- 6. Wu, H. C., Chang, D. K., & Huang, C. T. (2006). Targeted therapy for cancer. J Cancer Mol, 2, 57-66.

(A constituent unit of MAHE, Manipal)

Dr. B. S. Sathish Rao Director- MSLS Director – Research,

MAHE, Manipal

Padmini Pai B

Research Scholar Department of Biophysics MSLS, MAHE, Manipal

Kamalesh D Mumbrekar

Assistant Professor Department of Radiation Biology and Toxicology MSLS, MAHE, Manipal

Dr. Babitha K. S. (Guide) Associate Professor Department of Biophysics MSLS, MAHE, Manipal

Manasa G Shetty

Research Scholar Department of Biophysics MSLS, MAHE, Manipal

ACKNOWLEDGEMENT

Krishna Kishore Mahato Professor & HOD Department of Biophysics MSLS, MAHE, Manipal

Ajith Nayak

Lab Assistant Department of Biophysics MSLS, MAHE, Manipal

Bharath Prasad A S

Assistant Professor Department of Ageing Research MSLS, MAHE, Manipal

Department of Biophysics, MSLS, MAHE, Manipal Department of Biotechnology, MSLS, MAHE, Manipal Manipal Schrodinger Centre for Molecular Simulations, Manipal Academy of Higher Education All Faculty members, Research Scholars, Lab technicians MSLS, MAHE, Manipal

Thank You