A Systematic Review On High Flux And Medium Cut Off Membranes – Benchmarking Using Simulation Models

Paper Presentation at

MRC-2023 Manipal Research Colloquium

Abstract ID- MRCTS022

Presenter: Ms. Ahana Fatima Alex

Authors:

Ahana Fatima Alex *Research Scholar Department of Electrical and Electronics Engineering Manipal Academy of Higher Education (MAHE)* Dubai, UAE Ahana.Fatima@dxb.manipal.edu Dr. R Vinoth Department of Electronics and communication Engineering Manipal Institute of Technology (MIT) MAHE Manipal, India vinoth.nair@manipal.edu Dr. Ravishankar Dudhe Department of Electrical and Electronics Engineering Manipal Academy of Higher Education (MAHE) Dubai, UAE ravishankar.dudhe@manipaldubai. com

Content

- 1. Introduction
- 2. Aim / Literature Review
- 3. Methodology
- 4. Results & Implications
- 5. Conclusion

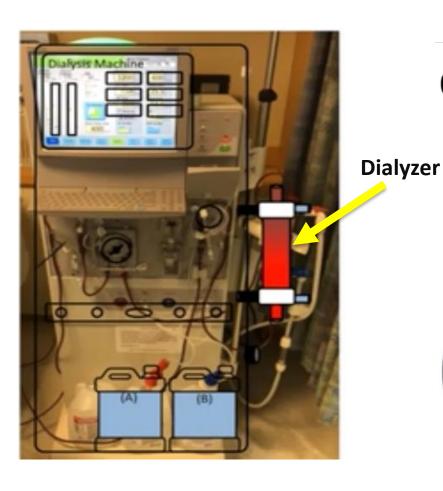
References

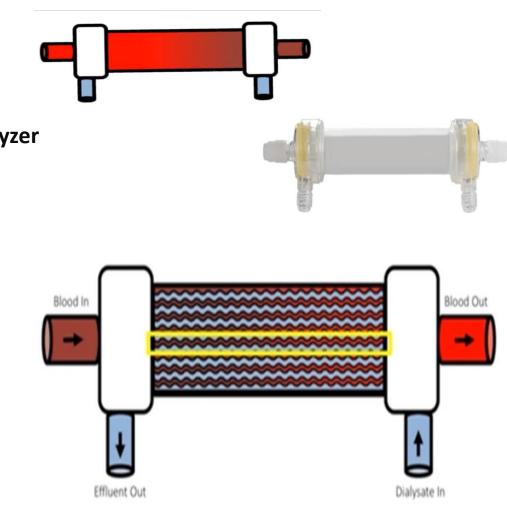
Introduction

NSPIRED BY VITE RED BY VITE REDUCATION DUBAI CAMPUS (Deemed to be University under Section 3 of the UGC Act, 1956)

BLOOD PURIFIED IN EXTRACORPOREAL FLUID CIRCUIT (OUTSIDE THE BODY)

"CLEANING THE BLOOD"


EACH SESSION REMOVES 1-3 LITERS OF FLUID AND 50GMS OF UREMIC TOXINS.


MOST WIDELY FOLLOWED

TREATMENT METHOD WORLDWIDE

Introduction

Aim

Design – High performing membrane

- Eliminates maximum toxin
- Retain essential solutes

The literature supporting the study of these dialyzers are [2-15].

Major membranes by Fresenius and Baxter & Gambro

- Fx CorDiax 80
- Fx CorDiax 800
- RevaclearMax
- Optiflux F160NRe
- Optiflux F200NRe

Literature [7, 11] - works by research and development team of Gambro, a unit of Baxter international inc. to improve the performance of hemodialyzer membranes and thereby optimize the dialyzer designs.

- Model predicted compared with the experimental results of literatures and data sheets for validation.
- Results of Revaclear and Optiflux validated with literatures whose study registered with ClinicalTrials.gov (identifier NCT00636077) [9-10].

Literature Review

SI no.	Authors/ Journal	Purpose Of Study	Key Findings
1.	Donato D, Storr M, Krause B. "Design optimization of hollow fiber dialyzers to enhance internal filtration based on a mathematical model". Journal of Membrane Science. 2020 Mar 15; 598: 117690.	The study helped in modelling medium cut-off membranes focusing on the effect of internal filtration on clearance. The paper aimed at optimization	factors that influences internal
2.	Islam, Md Shihamul. "Study of Dialyzer Membrane (polyflux 210h) and Effects of Different Parameters on Hemodialysis Performance." <i>PhD diss.</i> , <i>University of Saskatchewan</i> , 2013.	The study too aimed at understanding the toxin clearance with respect to changes in different functional and geometric parameters. High flux membrane 210H was considered in this study.	The study supported in evaluating the toxin clearance for combinations of parametric changes. The paper was validated using experimental results and data sheets provided by manufacturers.

Literature Review

SI no.	Authors/ Journal	Purpose Of Study	Key Findings		
3	Donato, D., Boschetti-de- Fierro, A., Zweigart, C., Kolb, M., Eloot, S., Storr, M., Segers, "Optimization of dialyzer design to maximize solute removal with a two-dimensional transport model". <i>Journal of</i> <i>Membrane Science</i> , <i>541</i> , 519- 528, 2017.	Optimization of dialyzer design to maximize solute removal with a two- dimensional transport model. The study Claims that there is still room for optimal design. Various types of membranes were studied. COMSOL Multiphysics was used as the simulation tool and Two- Dimensional axisymmetric model was designed.	Therenova 400 MCO AA, FX CorDiax 80, FX CorDiax 800 and Revaclear Max were used for comparing and validating. Experimental data were also used for comparing results. The paper ensures sufficient solute removal, but losses weren't considered. The work immensely helped in understanding the effect of different dialysate flow rate on toxin clearance. Clinical trials and in vivo experimentations were done in this study. The study was registered with clinicalTrials.gov (identifier: NCT00636077).		
4	Bhimani JP, Ouseph R, Ward RA. "Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and β 2-microglobulin during clinical haemodialysis". Nephrology Dialysis Transplantation. 2010 Dec 1;25(12):3990-5.	The work aimed at understanding the performance of various toxins with respect to change in dialysate flow rate. The study mainly focused on membranes such as Revaclear Max and Optiflux			

Methodology

High performance membranes - Fx CorDiax 80, Fx CorDiax 800, Revaclear Max, Optiflux F160NRe and Optiflux F200NRe - modelled using finite element analysis software and their performances were studied.

[Models of Fx CorDiax 80 are elaborated in detail while only the results and comparison chart of other membrane models designed using the same methodology are depicted to showcase its uniqueness over other membranes.]

Uremic toxins of different molecular weight were made to pass through the membrane.

The blood flow rate Q_b and dialysate flow rate Q_d were varied from 200-800ml/min as per membrane type. The initial concentration of blood, c_{in} was set at 1000 mol/m³ for all cases and the final concentration c_{out} was determined for each toxin molecule that passed through the membrane.

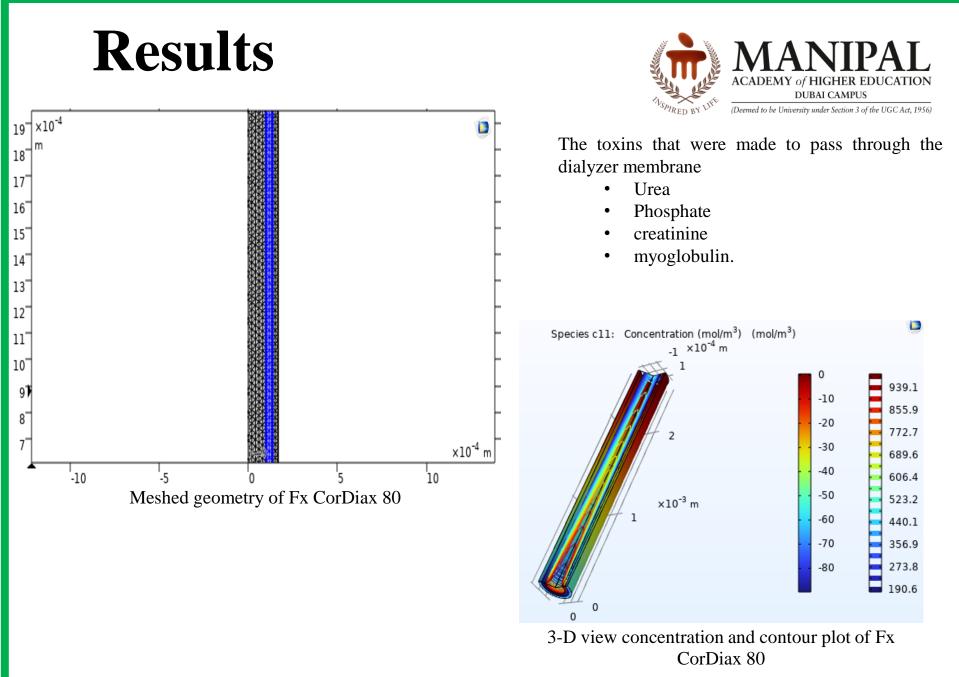
COMSOL Multiphysics 6.0 was the simulation tool used for all the designs. Transport of diluted species of chemical reaction module was the interface used and a stationary study was considered.

The numerical expression used to find K is as below.

 $K = Q_b \; (c_{in} - c_{out}) / \; c_{in}$

6/23/2023

Methodology



9

Model 1 – Fx CorDiax 80

LIST OF PARAMETERS USED FOR MODELING FX CORDIAX 80 [8]

Parameter	Value
Inner radius of fiber	0.175mm
Membrane thickness	0.213mm
Width of dialysate channel	0.245mm
Length of fiber	270mm
Scale	90
Blood flow rate	300ml/min
Dialysate flow rate	500ml/min
Number of fibers	12960
Velocity of blood	(2*Q_b)/(3.1416*R1^2*n)
Velocity of dialysate	-((2*Q_d)/(3.1416*((0.75*R3^4)+(0.25*R2^4)-(R2^2*R3^2)- (R3^4*log(R3/R2)))*n))
Inlet concentration, c _{in}	1000mol/m ³
6/23/2023	MRC 2023, Manipal Academy of Higher Education, Manipal

CIMARADICH RADEDRADBOBOREDSCOSTARIAS OS MULLISFICONR JAHROPHYLUX OP 200NR F160NRE

	LITERAT	ΓURE	Toxin	Qb	Qd	Cout	K , Simulation	K, Literature			
			Urea	300	500	123.7	262.89	271	elled a	nd simulated.	
			Urea	400	500	192.57	322.972	317	<u>.</u>		
Toxin	Qb	Qd	Urea	400	600	197.26	321.096	332	~		
			Urea	400	800	203.31	318.676	349	SIMULATION VS. LITERATURE, AR MAX		
			Urea	500	800	265.19	367.405	394			
Urea	400	50	Urea	600	800	317.4	409.56	423			
			Creatinine	300	500	172.3	248.31	242			
			Creatinine	400	500	249.14	300.344	274	t	K, Simulation	K, Literature
Phosphate	400	50	Creatinine	400	600	253.66	298.536	288	.64.32	334.27	339
			Creatinine	400	800	259.46	296.216	302	255.41	297.83	297
			Creatinine	500	800	323.63	338.185	331			
Creatinine	400	50	Creatinine	600	800	375.82	374.508	350	.71.06	331.58	311
	• While in Optiflux F160N			300	500	222.95	233.115	241	.73.55	330.58	295
flow rate was varied from		Phosphate	400	500	304	278.4	279				
		Phosphate	400	600	308.29	276.684	290	264.03	294.39	184	
		Phosphate	400	800	313.65	274.54	304				
		Phosphate	500	800	377.83	311.085	340	180.3	327.88	126	
		Phosphate	600	800	428.62	342.828	369				

Conclusion

Fx CorDiax 80, Fx CorDiax 800, Revaclear Max, Optiflux F160NRe and Optiflux F200NR- designed and modelled to observe the clearance rate of various toxins at different velocities of blood and dialysate.

The outcome shows close approximation with the experimental data from literature and manufacturers data.

Membranes thus modelled- superior to the existing conventional high flux membranes and can be used for patient-specific treatment purposes as in use of MCO membranes in expanded hemodialysis.

The results also predict that Revaclear Max and Fx CorDiax series are of good performance and can be further studied for improvisation in the model to achieve optimization.

One step closer to optimization.

Reference

- 1. Diabetes.co.uk the global diabetes community
- 2. Islam, Md Shihamul. "Study of Dialyzer Membrane (polyflux 210h) and Effects of Different Parameters on Hemodialysis Performance." *phd diss., University of Saskatchewan, 2013.*
- 3. Turgeon, Mary Louise. Clinical hematology: theory and procedures. Lippincott Williams & Wilkins, 2005.
- 4. Gambro Polyflux H Available at: https://renalcare.baxter.com (Accessed in August 2022).
- 5. Ouseph R, Hutchison CA, Ward RA. Differences in solute removal by two high-flux membranes of nominally similar synthetic polymers. Nephrology Dialysis Transplantation. 2008 May 1;23(5):1704-12.
- 6. Ward RA, Ouseph R. Modification of membrane characteristics allows a reduction in dialyzer membrane area without loss of performance. Inproceedings of the 40th American Society of Nephrology Congress 2007 Nov 3 (pp. 2-5).
- 7. Donato, D., Boschetti-de-Fierro, A., Zweigart, C., Kolb, M., Eloot, S., Storr, M., ... & Segers, P. (2017). Optimization of dialyzer design to maximize solute removal with a two-dimensional transport model. *Journal of Membrane Science*, 541, 519-528.
- 8. Eloot S, d'asseler Y, De Bondt P, Verdonck P. Combining SPECT medical imaging and computational fluid dynamics for analyzing blood and dialysate flow in hemodialyzers. The International journal of artificial organs. 2005 Jul;28(7):739-49.
- 9. Kirsch AH, Lyko R, Nilsson LG, Beck W, Amdahl M, Lechner P, Schneider A, Wanner C, Rosenkranz AR, Krieter DH. Performance of hemodialysis with novel medium cut-off dialyzers. Nephrology Dialysis Transplantation. 2017 Jan 1;32(1):165-72.
- 10. Bhimani JP, Ouseph R, Ward RA. Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and β 2-microglobulin during clinical haemodialysis. Nephrology Dialysis Transplantation. 2010 Dec 1;25(12):3990-5.
- 11. Donato, D., Storr, M., & Krause, B. (2020). Design optimization of hollow fiber dialyzers to enhance internal filtration based on a mathematical model. *Journal of Membrane Science*, 598, 117690.
- 12. Therenova 400 Data sheet Available at: https://renalcare.baxter.com (Accessed in August 2022).

13. Optiflux Dialyzers Available at: https://fmcna.com (Accessed in August 2022).

- 14. Revaclear Available at: https://www.baxter.com (Accessed in August 2022).
- 15. Fx cordiax Available at: http://www.bcrenal.ca (Accessed in August 2022).

