"Multi-objective resistance-capacitance optimization algorithm: An effe" by Sowmya Ravichandran, Premkumar Manoharan et al.
 

Multi-objective resistance-capacitance optimization algorithm: An effective multi-objective algorithm for engineering design problems

Document Type

Article

Publication Title

Heliyon

Abstract

Focusing on practical engineering applications, this study introduces the Multi-Objective Resistance-Capacitance Optimization Algorithm (MORCOA), a new approach for multi-objective optimization problems. MORCOA uses the transient response behaviour of resistance-capacitance circuits to navigate complex optimization landscapes and identify global optima when faced with many competing objectives. The core approach of MORCOA combines a dynamic elimination-based crowding distance mechanism with non-dominated sorting to generate an ideal and evenly distributed Pareto front. The algorithm's effectiveness is evaluated through a structured, three-phase analysis. Initially, MORCOA is applied to five benchmark problems from the ZDT test suite, with performance assessed using various metrics and compared against state-of-the-art multi-objective optimization techniques. The study then expands to include seven problems from the DTLZ benchmark collection, further validating MORCOA's effectiveness. The final phase involves applying MORCOA to six real-world constrained engineering design problems. Notably, the optimization of a honeycomb heat sink, which is crucial in thermal management systems, is a significant part of this study. This phase uses a range of performance measures to assess MORCOA's practical application and efficiency in engineering design. The results highlight MORCOA's robustness and efficiency in both real-world engineering applications and benchmark problems, demonstrating its superior capabilities compared to existing algorithms. The effective use of MORCOA in real-world engineering design problems indicates its potential as an adaptable and powerful tool for complex multi-objective optimization tasks.

DOI

10.1016/j.heliyon.2024.e35921

Publication Date

9-15-2024

This document is currently not available here.

Share

COinS