"The impact of ecological aging on the mechanical performance of jute-b" by B. H. Maruthi Prashanth, Shivakumar Gowda et al.
 

The impact of ecological aging on the mechanical performance of jute-banana fibre phenol-formaldehyde hybrid composites

Document Type

Article

Publication Title

Materials Research Express

Abstract

Natural fiber composites provide an environmentally favorable and sustainable alternative to traditional materials, greatly reducing environmental impact. Aging tests are required to evaluate the long-term mechanical performance and durability of these composites under varied situations, ensuring their dependability and safety over time. This study investigates the effects of ecological aging on jute-banana fiber reinforced phenol-formaldehyde (JBP-F) composites. The experiment involved fabricating JBP-F composites using jute and banana fibers with varying weight ratios (60:40, 50:50, 40:60, 30:70) and subjecting them to various aging tests like long-time water resistance, accelerated water resistance, thermal aging, hydrothermal aging, soil burial test, and accelerated weathering test. The result showed that the composite with a 50:50 jute-banana fiber to resin ratio (JBP-F50) outperformed the other compositions examined in terms of aging resistance. This balanced ratio likely optimized fiber-matrix interaction, leading to superior strength and water resistance. Higher fiber content composites (like JBP-F60) absorbed more water due to weaker bonding, while lower fiber content (JBP-F30) suffered more in high temperatures. All composites experienced strength loss during thermal and hydrothermal aging due to heat and moisture cycles. JBP-F50 again showed the least degradation, possibly due to the resin’s ability to recover. In soil burial tests, biodegradation impacted strength, with higher fiber content composites (JBP-F60) degrading more. Finally, weathering tests revealed some surface deterioration due to UV radiation. However, the resin offered protection, with JBP-F30 (higher resin content) experiencing the most weight loss.JBP-F50, with its balanced fiber-resin ratio, demonstrated the best resistance to various environmental stresses, making it a promising option for sustainable composite applications.

DOI

10.1088/2053-1591/ad6dba

Publication Date

8-1-2024

This document is currently not available here.

Share

COinS