"Thermocatalytic Pyrolysis of Waste Areca Nut into Renewable Fuel and V" by Ranjeet Kumar Mishra, Bhavana Gariya et al.
 

Thermocatalytic Pyrolysis of Waste Areca Nut into Renewable Fuel and Value-Added Chemicals

Document Type

Article

Publication Title

ACS Omega

Abstract

Pyrolytic oil is currently in its early stages of production and distribution but has the potential to grow into a significant renewable energy source. It may be processed into a variety of useful substances, including chemicals, and used for heating, transportation, and energy production. The present investigation involves the production and characterization of pyrolytic oil from areca nut husk (ANH), with and without ZSM-5. The pyrolysis experiment was conducted in a semibatch tubular reactor at 600 °C and a heating rate of 80 °C min-1 using ZSM-5 at 20 wt %. The pyrolytic oil was examined via elemental analysis, viscosity, density, moisture content, GC-MS, FTIR, higher heating value (HHV), and ash content. The analysis of kinetics verified that the activation energy rises in proportion to the conversion rate. Additionally, employing ZSM-5 in catalytic pyrolysis at 20 wt % boosted the yield of pyrolytic oil by 11% compared to thermal pyrolysis. Employing ZSM-5 at 20 wt % resulted in a decrease in viscosity, oxygen content, and density by approximately 43.40 cSt, 15.20%, and 168 MJ kg-1, respectively. Moreover, it led to an increase in higher heating value (HHV) and carbon content by 11.71 MJ kg1- and 14.06%, respectively. An FTIR study of pyrolytic oil revealed the occurrence of hydrocarbons, aromatics, phenols, alcohols, and oxygenated chemicals. Moreover, GC-MS analysis indicated a significant increase in hydrocarbons (10.31%) and a decrease in phenols (2.36%), acids (6.38%), and oxygenated compounds with the introduction of the catalyst. Consequently, it can be inferred that utilizing ZSM-5 at 20 wt % during the pyrolysis of ANH aids in enhancing both the yield and characteristics of the resulting pyrolysis oil.

First Page

25779

Last Page

25792

DOI

10.1021/acsomega.3c10184

Publication Date

6-18-2024

This document is currently not available here.

Share

COinS