Identification of phytomolecules as isoform and mutation specific PI3K-α inhibitor for protection against breast cancer using e-pharmacophore modeling and molecular dynamics simulations

Document Type

Article

Publication Title

BMC Chemistry

Abstract

PI3K-α mutation plays a critical role in cancer development, notably in breast cancer, particularly within HR + /HER2- subtypes. These mutations drive tumor growth and survival by activating the PI3K/AKT/mTOR pathway, which is essential for cell proliferation and survival. Our research aimed to identify natural compounds that can inhibit mutant and specific isoforms of PI3K-α to prevent tumor progression. e-Pharmacophore model was generated using Receptor-Ligand complex using the Inavolisib drug (PDB:8EXV) and phase screening was performed using the Molport database of natural compounds. Through molecular docking studies we identified seven promising compounds for further molecular dynamics simulations. Among these, three compounds—STOCK1N-85097, STOCK1N-85998, and STOCK1N-86060—showed significant stability and interaction with PI3K-α. These compounds demonstrated favorable results in several parameters, including RMSD, RMSF, Rg, SASA, PCA, FEL, and total energy evaluations. Therefore, these compounds are projected to function as PI3K-α inhibitors and because of its natural origin it can possess fewer side effects than the conventional medicine, which should be validated by proper in vivo and in vitro models.

DOI

10.1186/s13065-024-01317-w

Publication Date

12-1-2024

This document is currently not available here.

Share

COinS