Optimization of Process Parameters for Minimum Kerf Taper Angle and Surface Roughness in the Abrasive Water Jet Machining of a Hybrid Composite

Document Type

Article

Publication Title

Journal of Composites Science

Abstract

In the present experiment, the abrasive water jet machining parameters, such as water pressure, standoff distance, and traverse speed, are selected to study the effect of each parameter on the kerf taper angle and surface roughness during the machining of glass, jute, and carbon hybrid composite. The other machining parameters are kept constant. For each parameter, three levels are fixed on the basis of previous literature reviews. The Response Surface Methodology is used to design the required number of experiments and to optimize the machining parameters to obtain the minimum kerf taper angle and surface roughness. The levels selected for water pressure are 150, 220, and 250 MPa; traverse speeds are 20, 40, and 60 mm/min; and, similarly, stand-off distances are 2, 5, and 8 mm. Experimental results confirm that the parameter inversely affects both kerf angle and surface roughness. On the other hand, parameters traverse speed and stand-off distance, directly affecting both outputs. According to RSM optimization, to obtain the minimum kerf taper angle and surface roughness, we should fix the pressure at a higher level and other parameters at a lower level. For the considered range, the obtained minimum kerf angle and roughness values are 1.4982 radians and 2.0920 μm.

DOI

10.3390/jcs9110604

Publication Date

11-1-2025

This document is currently not available here.

Share

COinS