Photoacoustic-Integrated Multimodal Approach for Colorectal Cancer Diagnosis

Document Type

Article

Publication Title

ACS Biomaterials Science and Engineering

Abstract

Colorectal cancer remains a major global health challenge, emphasizing the need for advanced diagnostic tools that enable early and accurate detection. Photoacoustic (PA) spectroscopy, a hybrid technique combining optical absorption with acoustic resolution, is emerging as a powerful tool in cancer diagnostics. It detects biochemical changes in biomolecules within the tumor microenvironment, aiding early identification of malignancies. Integration with modalities, such as ultrasound (US), photoacoustic microscopy (PAM), and nanoparticle-enhanced imaging, enables detailed mapping of tissue structure, vascularity, and molecular markers. When combined with endoscopy and machine learning (ML) for data analysis, PA technology offers real-time, minimally invasive, and highly accurate detection of colorectal tumors. This approach supports tumor classification, therapy monitoring, and detecting features like hypoxia and tumor-associated bacteria. Recent studies integrating machine learning with PA imaging have demonstrated high diagnostic accuracy, achieving area under the curve (AUC) values up to 0.96 and classification accuracies exceeding 89%, highlighting its potential for precise, noninvasive colorectal cancer detection. Continued advancements in nanoparticle design, molecular targeting, and ML analytics position PA as a key tool for personalized colorectal cancer management.

First Page

4033

Last Page

4049

DOI

10.1021/acsbiomaterials.5c00918

Publication Date

7-14-2025

This document is currently not available here.

Share

COinS