Assessment of Fatty Acid Concentrations Among Blood Matrices

Document Type

Article

Publication Title

Metabolites

Abstract

Background/Objectives: Fatty acids, the building blocks of lipids, contribute to numerous crucial life processes and are implicated in numerous disease pathologies. Circulating fatty acids can be extracted/trans-esterified to their respective methyl ester forms and quantified from a variety of biological samples. This study aims to identify quantifiable fatty acids (through alkali trans-esterification) in human circulation, assess the correlation of the detectable fatty acid methyl esters (FAMEs) compounds between whole blood, serum and plasma matrices and propose the most ideal matrix for quantification of FAMEs. Methods: This anonymised study was carried out in a tertiary hospital after obtaining ethical approval and involved analysis of residual fasting whole blood, serum and plasma samples obtained from 20 apparently healthy subjects attending the routine health check services at the study centre. Fatty acids were converted to its methyl ester form by methanolic KOH trans-esterification and subjected to GCMS analysis. Paired t test, Pearsons’s correlation, linear regression and Bland Altman test were employed to assess the agreeability between matrices. Results: 9 out of 37 FAME compounds were detected in all three matrices. Strong correlations and statistically significant regression equations were obtained for the 9 compounds between plasma and serum matrices. Undecanoate, pentadecanoate, linolenate, and palmitate levels were lowest in plasma, while stearate, heptadecanoate levels were highest in whole blood. Myristate was highest in serum, dodecanoate was highest in plasma while docosahexanoate was found to be comparable in all three matrices. Methyl ester forms of dodeconate, myristate, pentadecanoate, palmitate, heptadecanoate, stearate, and linolenate were observed in higher concentrations in plasma when compared to serum. Conclusions: The current study shows similar & correlating FAME concentrations between serum and plasma matrix; however, whole blood FAME concentrations appear significantly different. Plasma serves as the most ideal matrix for detection and quantification of circulating fatty acids.

DOI

10.3390/metabo15070482

Publication Date

7-1-2025

This document is currently not available here.

Share

COinS