Process optimisation for improved chitinase production from marine isolate Bacillus haynesii and bioethanol production with Saccharomyces cerevisiae

Document Type

Article

Publication Title

Brazilian Journal of Microbiology

Abstract

In the quest for sustainable fuel sources, chitin-based biorefineries are gaining recognition as chitin is the second most abundant bioresource after cellulose. This approach not only provides an effective method for converting shell waste from seafood processing into valuable bioethanol but also helps in waste management. In this study, Bacillus haynesii, a marine isolate, was investigated and this is the first report on optimisation of process parameters for chitinase production from Bacillus haynesii. The One Factor at a Time (OFAT) method was used to optimize process parameters including inoculum age, inoculum size, temperature, pH, and filling volume, with colloidal chitin identified as the best carbon source for the growth of Bacillus haynesii. The Plackett-Burman Design (PBD) was employed to screen media components, followed by optimization using the Taguchi Orthogonal Array method. The media components investigated included glycerol, yeast extract, MnCl2·4H2O, MgSO4·7H2O, NH4Cl, and colloidal chitin. As a result, the optimized media—comprising 7.5 g/L yeast extract, 7.5% (w/v) glycerol, 0.6% (w/v) colloidal chitin, 1.44 g/L MnCl2·4H2O, and 1.2 g/L MgSO4·7H2O—yielded an enzyme activity of 6.85 U/mL with a specific activity of 28.87 U/mg. Furthermore, ethanol production from chitin oligosaccharides by Saccharomyces cerevisiae was quantified using the potassium dichromate oxidation method, achieving a bioethanol concentration of 2.48% v/v from 33.18 g/L of chitin oligosaccharides. These results demonstrate the potential of Bacillus haynesii-derived chitin oligosaccharides as a promising substrate for bioethanol production.

First Page

835

Last Page

850

DOI

10.1007/s42770-025-01644-7

Publication Date

6-1-2025

This document is currently not available here.

Share

COinS