Emerging contaminant removal using eco-friendly zinc ferrite nanoparticles: Sunlight-driven degradation of tetracycline

Document Type

Article

Publication Title

Emerging Contaminants

Abstract

Emerging contaminants, particularly pharmaceutical pollutants, pose significant environmental challenges, necessitating sustainable remediation strategies. In this study, mesoporous zinc ferrite nanoparticles (ZnFe2O4) were synthesized via a green hydrothermal method using sweet cherry leaf extract for the photocatalytic degradation of tetracycline (TC) under natural sunlight. XRD analysis confirmed a spinel cubic structure with an average crystallite size of 8.02 nm, while XPS revealed the elemental composition, including Zn (8.92 %), Fe (17.6 %), C (27.88 %), and O (45.6 %). The nanoparticles exhibited a band gap of 4.87 eV, broad UV–visible absorption, and a specific surface area of 77.99 m2/g with a mean pore size of 10.79 nm, all contributing to enhanced photocatalytic activity. VSM analysis demonstrated superparamagnetic behavior with a saturation magnetization of 10.91 emu/g, which remained stable after photocatalysis (10.81 emu/g), indicating excellent structural stability and reusability. The degradation of TC followed a first-order kinetic model, achieving 94 % efficiency in the first cycle, with the rate constant decreasing from 0.0172 min⁻1 at 10 mg/L to 0.0043 min⁻1 at 50 mg/L. Even after five cycles, the material retained over 73 % degradation efficiency, showcasing its durability. This work highlights the potential of eco-friendly ZnFe2O4 nanoparticles as a sustainable and efficient solution for mitigating emerging contaminants in wastewater, contributing to environmental remediation efforts.

DOI

10.1016/j.emcon.2025.100469

Publication Date

6-1-2025

This document is currently not available here.

Share

COinS