Analysing the flexural response of reinforced concrete cantilever beams under the influence of corrosion: an experimental and numerical study

Document Type

Article

Publication Title

Cogent Engineering

Abstract

The main goal of this study is to evaluate how reinforcement corrosion affects the bending strength of cantilever beams made of reinforced concrete. In the experimental phase, the beams underwent corrosion up to 10% using an accelerated corrosion methodology. Applied corrosion monitoring equipment was employed to gauge the corrosion rate accurately. Following that, corroded beams were tested in the laboratory to examine their flexural behavior. Notably, Portland Pozzolana cement beams exhibited greater corrosion resistance compared to ordinary Portland cement beams, attributed to lower chloride migration in PPC beams, resulting in a 15% increase in corrosion resistance. Additionally, finite element analysis was conducted to develop a numerical analytical approach to effectively evaluate the behaviour of reinforced concrete beams. The research findings revealed that the FE model predicted failure loads to be approximately 11% more than experimental values, while deflections were estimated to be 8% lesser than the experimental value, the FEM model more stiffer than experimental values.

DOI

10.1080/23311916.2024.2438824

Publication Date

1-1-2025

This document is currently not available here.

Share

COinS