Impact of Parasitics on the Dynamic Performance of Capacitor Clamped Bidirectional DC–DC Converter

Document Type

Article

Publication Title

Iet Power Electronics

Abstract

This study investigates the impact of parasitic elements on the dynamic performance of a capacitor clamped bidirectional DC–DC converter (CC-BDC) to emulate real-world conditions. Non-ideal factors, including component imperfections and parasitic losses, are incorporated to derive accurate duty cycle expressions and optimise inductor and capacitor design under ripple constraints influenced by equivalent series resistance (ESR). A detailed analysis of inrush currents for conventional and proposed CC-BDC designs reveals significant improvements in performance. The proposed CC-BDC achieves a 102.53% reduction in inrush current overshoot, with peak input currents reduced from 13.31 to 7.84 A and a settling time improvement from 0.0275 to 0.0207 s. Dynamic performance metrics, such as gain margin, phase margin, and phase crossover frequency, are used to evaluate stability under varying capacitance, inductance, and resistance conditions. The proposed converter demonstrates a 33.3% reduction in output voltage % peak overshoot (%MP) under capacitance variations and a 15.7% improvement in overshoot control for inductor current with increased inductance. These findings highlight the CC-BDC's enhanced stability, reduced overshoot, and faster settling times, making it a high-performance and cost-effective solution for renewable energy systems and electric vehicle charging infrastructure.

DOI

10.1049/pel2.70059

Publication Date

1-1-2025

This document is currently not available here.

Share

COinS