Influence of hBN and MoS2 fillers on toughness and thermal stability of carbon fabric-epoxy composites
Document Type
Article
Publication Title
Frattura Ed Integrita Strutturale
Abstract
Hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) fillers of 2 to 8 wt.% influence on toughness, microhardness and thermal stability of carbon fabric-reinforced epoxy composite (CFREC) reported. Mode-I, mixed-mode I/II toughness and microhardness of CFREC improved due to the addition of hBN and MoS2 separately upto 6 wt.% filler loading. The epoxy matrix in CFREC modified by hBN and MoS2 strengthens the matrix, deflects the crack path and resists delamination. Toughness reduced beyond 6 wt.% filler addition due to agglomeration and poor fiber-filler-matrix bonding as revealed by the surface morphology of the fracture specimen. Thermal analysis reveals decomposition temperature at 25% weight loss increased from 395 to 430 °C and 395 to 411 °C due to 4 wt.% MoS2 and 4 wt.% hBN addition to CFREC respectively. Impermeable characteristics of MoS2 and hBN fillers caused tortuous diffusion path for gas molecules and delayed thermal decomposition.
First Page
240
Last Page
260
DOI
10.3221/IGF-ESIS.62.17
Publication Date
10-1-2022
Recommended Citation
Rao, Yermal Shriraj; Shivamurthy, B.; Mohan, Nanjangud Subbarao; and Shetty, Nagaraja, "Influence of hBN and MoS2 fillers on toughness and thermal stability of carbon fabric-epoxy composites" (2022). Open Access archive. 14668.
https://impressions.manipal.edu/open-access-archive/14668