Two step convolutional neural network for automatic glottis localization and segmentation in stroboscopic videos
Document Type
Article
Publication Title
Biomedical Optics Express
Abstract
Precise analysis of the vocal fold vibratory pattern in a stroboscopic video plays a key role in the evaluation of voice disorders. Automatic glottis segmentation is one of the preliminary steps in such analysis. In this work, it is divided into two subproblems namely, glottis localization and glottis segmentation. A two step convolutional neural network (CNN) approach is proposed for the automatic glottis segmentation. Data augmentation is carried out using two techniques : 1) Blind rotation (WB), 2) Rotation with respect to glottis orientation (WO). The dataset used in this study contains stroboscopic videos of 18 subjects with Sulcus vocalis, in which the glottis region is annotated by three speech language pathologists (SLPs). The proposed two step CNN approach achieves an average localization accuracy of 90.08% and a mean dice score of 0.65.
First Page
4695
Last Page
4713
DOI
10.1364/BOE.396252
Publication Date
1-1-2020
Recommended Citation
Belagali, Varun; Achuth Rao, M. V.; Gopikishore, Pebbili; and Krishnamurthy, Rahul, "Two step convolutional neural network for automatic glottis localization and segmentation in stroboscopic videos" (2020). Open Access archive. 1827.
https://impressions.manipal.edu/open-access-archive/1827