NCoR1 fine-tunes type-I IFN response in cDC1 dendritic cells by directly regulating Myd88-IRF7 axis under TLR9

Document Type

Article

Publication Title

European Journal of Immunology

Abstract

Plasmacytoid dendritic cells (DCs) are reported to induce robust type-I interferon (IFN) response, whereas cDC1 DCs develop moderate type-I IFN response upon TLR9 stimulation. It is very interesting to understand how this signaling under TLR9 is tightly regulated for the induction of type-I IFNs. Here, we report co-repressor protein NCoR1 as the major factor fine-tuning the signaling pathways regulating IFN-β expression under TLR9 in cDC1 DCs. We found that NCoR1 knockdown induced a robust IFN-β-mediated antiviral response upon TLR9 activation in cDC1 DCs. At the molecular level, we showed that NCoR1 directly repressed MyD88-IRF7 signaling axis in cDC1 cells. Therefore, NCoR1 depletion enhanced pIRF7 levels, IFN-β secretion, and downstream pSTAT1-pSTAT2 signaling, leading to sustained induction of IFN stimulatory genes. Integrative genomic analysis depicted strong enrichment of an antiviral gene-module in CpG-activated NCoR1 knockdown DCs upon TLR9 activation. Moreover, we confirmed our findings in primary DCs derived from splenocytes of WT and NCoR1 DC−/− animals, which showed protection from Sendai and Vesicular Stomatitis viruses upon CpG activation. Ultimately, we identified that NCoR1–HDAC3 complex is involved in repressing the type-I IFN response in cDC1 DCs.

First Page

1959

Last Page

1975

DOI

10.1002/eji.202048566

Publication Date

12-1-2020

This document is currently not available here.

Share

COinS