Multi-scale convolutional neural network for accurate corneal segmentation in early detection of fungal keratitis

Document Type

Article

Publication Title

Journal of Fungi

Abstract

Microbial keratitis is an infection of the cornea of the eye that is commonly caused by prolonged contact lens wear, corneal trauma, pre-existing systemic disorders and other ocular surface disorders. It can result in severe visual impairment if improperly managed. According to the latest World Vision Report, at least 4.2 million people worldwide suffer from corneal opacities caused by infectious agents such as fungi, bacteria, protozoa and viruses. In patients with fungal keratitis (FK), often overt symptoms are not evident, until an advanced stage. Furthermore, it has been reported that clear discrimination between bacterial keratitis and FK is a challenging process even for trained corneal experts and is often misdiagnosed in more than 30% of the cases. However, if diagnosed early, vision impairment can be prevented through early cost-effective interventions. In this work, we propose a multi-scale convolutional neural network (MS-CNN) for accurate segmentation of the corneal region to enable early FK diagnosis. The proposed approach consists of a deep neural pipeline for corneal region segmentation followed by a ResNeXt model to differentiate between FK and non-FK classes. The model trained on the segmented images in the region of interest, achieved a diagnostic accuracy of 88.96%. The features learnt by the model emphasize that it can correctly identify dominant corneal lesions for detecting FK.

DOI

10.3390/jof7100850

Publication Date

10-1-2021

This document is currently not available here.

Share

COinS