Mitochondrial dysfunction and oxidative stress caused by cryopreservation in reproductive cells

Document Type

Article

Publication Title

Antioxidants

Abstract

Mitochondria, fundamental organelles in cell metabolism, and ATP synthesis are respon-sible for generating reactive oxygen species (ROS), calcium homeostasis, and cell death. Mitochon-dria produce most ROS, and when levels exceed the antioxidant defenses, oxidative stress (OS) is generated. These changes may eventually impair the electron transport chain, resulting in decreased ATP synthesis, increased ROS production, altered mitochondrial membrane permeability, and dis-ruption of calcium homeostasis. Mitochondria play a key role in the gamete competence to facilitate normal embryo development. However, iatrogenic factors in assisted reproductive technologies (ART) may affect their functional competence, leading to an abnormal reproductive outcome. Cry-opreservation, a fundamental technology in ART, may compromise mitochondrial function leading to elevated intracellular OS that decreases sperm and oocytes’ competence and the dynamics of fertilization and embryo development. This article aims to review the role played by mitochondria and ROS in sperm and oocyte function and the close, biunivocal relationships between mitochon-drial damage and ROS generation during cryopreservation of gametes and gonadal tissues in different species. Based on current literature, we propose tentative hypothesis of mechanisms involved in cryopreservation-associated mitochondrial dysfunction in gametes, and discuss the role played by antioxidants and other agents to retain the competence of cryopreserved reproductive cells and tissues.

First Page

1

Last Page

23

DOI

10.3390/antiox10030337

Publication Date

3-1-2021

This document is currently not available here.

Share

COinS