Aberrant cytoplasmic localization of ARID1B activates ERK signaling and promotes oncogenesis

Document Type

Article

Publication Title

Journal of Cell Science

Abstract

The ARID1B (BAF250b) subunit of the human SWI/SNF chromatin remodeling complex is a canonical nuclear tumor suppressor. We employed in silico prediction, intracellular fluorescence and cellular fractionation-based subcellular localization analyses to identify the ARID1B nuclear localization signal (NLS). A cytoplasm-restricted ARID1B-NLS mutant was significantly compromised in its canonical transcription activation and tumor suppressive functions, as expected. Surprisingly however, cytoplasmic localization appeared to induce a gain of oncogenic function for ARID1B, as evidenced from several cell line- and mouse xenograft-based assays. Mechanistically, cytoplasmlocalized ARID1B could bind c-RAF (RAF1) and PPP1CA causing stimulation of RAF-ERK signaling and β-catenin (CTNNB1) transcription activity. ARID1B harboring NLS mutations derived from tumor samples also exhibited aberrant cytoplasmic localization and acquired a neomorphic oncogenic function via activation of RAF-ERK signaling. Furthermore, immunohistochemistry on a tissue microarray revealed significant correlation of ARID1B cytoplasmic localization with increased levels of active forms of ERK1 and ERK2 (also known as MAPK3 and MAPK1) and of β-catenin, as well as with advanced tumor stage and lymph node positivity in human primary pancreatic tumor tissues. ARID1B therefore promotes oncogenesis through cytoplasm-based gain-of-function mechanisms in addition to dysregulation in the nucleus.

DOI

10.1242/jcs.251637

Publication Date

2-1-2021

This document is currently not available here.

Share

COinS