Hamlet-Pattern-Based Automated COVID-19 and Influenza Detection Model Using Protein Sequences
Document Type
Article
Publication Title
Diagnostics
Abstract
SARS-CoV-2 and Influenza-A can present similar symptoms. Computer-aided diagnosis can help facilitate screening for the two conditions, and may be especially relevant and useful in the current COVID-19 pandemic because seasonal Influenza-A infection can still occur. We have developed a novel text-based classification model for discriminating between the two conditions using protein sequences of varying lengths. We downloaded viral protein sequences of SARS-CoV-2 and Influenza-A with varying lengths (all 100 or greater) from the NCBI database and randomly selected 16,901 SARS-CoV-2 and 19,523 Influenza-A sequences to form a two-class study dataset. We used a new feature extraction function based on a unique pattern, HamletPat, generated from the text of Shakespeare’s Hamlet, and a signum function to extract local binary pattern-like bits from overlapping fixed-length (27) blocks of the protein sequences. The bits were converted to decimal map signals from which histograms were extracted and concatenated to form a final feature vector of length 1280. The iterative Chi-square function selected the 340 most discriminative features to feed to an SVM with a Gaussian kernel for classification. The model attained 99.92% and 99.87% classification accuracy rates using hold-out (75:25 split ratio) and five-fold cross-validations, respectively. The excellent performance of the lightweight, handcrafted HamletPat-based classification model suggests that it can be a valuable tool for screening protein sequences to discriminate between SARS-CoV-2 and Influenza-A infections.
DOI
10.3390/diagnostics12123181
Publication Date
12-1-2022
Recommended Citation
Erten, Mehmet; Acharya, Madhav R.; Kamath, Aditya P.; and Sampathila, Niranjana, "Hamlet-Pattern-Based Automated COVID-19 and Influenza Detection Model Using Protein Sequences" (2022). Open Access archive. 3616.
https://impressions.manipal.edu/open-access-archive/3616