Advances in the Whipple Shield Design and Development:: A Brief Review

Document Type

Article

Publication Title

Journal of Dynamic Behavior of Materials

Abstract

Safety of satellites as well as spacecrafts during space missions is a primary objective to preserve the physical and virtual assets onboard. Whipple shields belong to the class of protective equipment provided on the surface of the spacecrafts and satellites, to sustain impacts from the ultra-high speed debris, which can otherwise cause considerable damage to the corresponding structures. Recent works on whipple shields are focussed on determining the response of different geometrical arrangements and material properties under hyper-velocity impact at projectile speeds of 3-18 km/s. Advances in the whipple shield design include integrated and mechanised models employing high performance materials like fiber-metal laminates ensuring better operational capability. The forward bumper of the whipple shield is the first line of defence as it regulates the state of projectile after the primary impact. Use of aluminium alloys for front bumpers is popular, owing to their lightweight and strength characteristics. The advances for the front bumper have seen usage of ceramic, metallic foams, and super composite mixtures, which resulted in enhanced performance, durability and safety of the whipple shields. This work is a comprehensive coverage of the latest materials used for whipple shields, their performance characterization—both experimental and theoretical, and applications.

First Page

20

Last Page

38

DOI

10.1007/s40870-021-00314-7

Publication Date

3-1-2022

This document is currently not available here.

Share

COinS