A novel method for measuring sublingual temperature using conventional non-contact forehead thermometer

Document Type

Article

Publication Title

F1000Research

Abstract

Background: Sublingual temperature measurement is a quick and accurate representation of oral temperature and corresponds closely with core temperature. Sub-lingual temperature measurement using non-contact infrared thermometers has not been studied for this purpose and if accurate they would be a reliable and convenient way of recording temperature of a patient very quickly. The aim of the study was to evaluate the utility of recording sublingual temperature using an infrared non-contact thermometer and establish its accuracy by comparing the readings with tympanic thermometer recordings. Methods: This cross-sectional study was carried out in 29 patients (328 paired recordings from sublingual and tympanic sites simultaneously). Subjects were requested to keep their mouth closed for five minutes before recording the temperature. Sublingual recordings were performed for each patient at different times of the day using an infrared thermometer. The infrared thermometer was quickly brought 1cm away from the sublingual part of the tongue and the recordings were then done immediately. Readings were compared with the corresponding tympanic temperature. Results: The non-contact sublingual temperature correlated very closely with tympanic temperature (r=0.86, p<0.001). The mean difference between the infrared sublingual and tympanic temperature was 0.21°C (standard deviation [SD]:0.48°C, 95% confidence interval [CI] of 0.16-0.27). The intra-class correlation co-efficient (ICC) between core and sublingual temperatures was 0.830 (95% CI: 0.794 to 0.861) p<0.001. The sensitivity of sublingual IR (infrared) temperature of 37.65°C was 90% and specificity was 89% for core temperature >38°C. Conclusions: This innovative modification of using the forehead infrared thermometer to measure the sublingual temperature offers an accurate, rapid and non-contact estimation of core temperature.

DOI

10.12688/f1000research.74876.2

Publication Date

1-1-2022

This document is currently not available here.

Share

COinS