Gaussian Regression Models for Evaluation of Network Lifetime and Cluster-Head Selection in Wireless Sensor Devices
Document Type
Article
Publication Title
IEEE Access
Abstract
The paper presents a model predictive approach for evaluating network lifetime and cluster head selection for a wireless sensor network. The dynamic parameters of a wireless sensor network are collected using Smart Mesh IP Power and performance calculator. The study considers a machine learning approach to combine clustering with the optimal routing protocol. The hop depth, advertising, number of Motes, backbone, routing, reporting interval, payload size, downstream frame size, supply voltage, and path stability are the predictors, and the current consumption, data latency, and build time are the response variables to establish the models for estimating the power and performance of the network. The remaining energy in each node, distance from the base station, and data transmission rate are the predictors, and the priority of the cluster head is the response variable to establish models for achieving an optimal routing path in a wireless sensor network. The standard tree, Support Vector Machine, Ensemble, and Gaussian process regression models for lifetime estimation are analyzed in comparison with the Smart Mesh IP tool, and the models for cluster head selection are investigated in comparison with ANFIS based models. This novel approach concentrates on the effect of various dynamic parameters on network lifetime prediction.
First Page
20875
Last Page
20888
DOI
10.1109/ACCESS.2022.3152804
Publication Date
1-1-2022
Recommended Citation
George, Anna Merine; Kulkarni, S. Y.; and Kurian, Ciji Pearl, "Gaussian Regression Models for Evaluation of Network Lifetime and Cluster-Head Selection in Wireless Sensor Devices" (2022). Open Access archive. 5105.
https://impressions.manipal.edu/open-access-archive/5105