Support Vector Regression for Mobile Target Localization in Indoor Environments
Document Type
Article
Publication Title
Sensors
Abstract
Trilateration‐based target localization using received signal strength (RSS) in a wireless sensor network (WSN) generally yields inaccurate location estimates due to high fluctuations in RSS measurements in indoor environments. Improving the localization accuracy in RSS‐based systems has long been the focus of a substantial amount of research. This paper proposes two range‐free algorithms based on RSS measurements, namely support vector regression (SVR) and SVR + Kalman filter (KF). Unlike trilateration, the proposed SVR‐based localization scheme can directly estimate target locations using field measurements without relying on the computation of distances. Unlike other state‐of‐the‐art localization and tracking (L&T) schemes such as the generalized regression neural network (GRNN), SVR localization architecture needs only three RSS measurements to locate a mobile target. Furthermore, the SVR based localization scheme was fused with a KF in order to gain further refinement in target location estimates. Rigorous simulations were carried out to test the localization efficacy of the proposed algorithms for noisy radio frequency (RF) channels and a dynamic target motion model. Benefiting from the good generalization ability of SVR, simulation results showed that the presented SVR‐based localization algorithms demonstrate superior perfor-mance compared to trilateration‐ and GRNN‐based localization schemes in terms of indoor localization performance.
DOI
10.3390/s22010358
Publication Date
1-1-2022
Recommended Citation
Jondhale, Satish R.; Mohan, Vijay; Sharma, Bharat Bhushan; and Lloret, Jaime, "Support Vector Regression for Mobile Target Localization in Indoor Environments" (2022). Open Access archive. 5167.
https://impressions.manipal.edu/open-access-archive/5167