A Review on the Modelling Techniques of Liquid Storage Tanks Considering Fluid–Structure–Soil Interaction Effects with a Focus on the Mitigation of Seismic Effects through Base Isolation Techniques

Document Type

Article

Publication Title

Sustainability (Switzerland)

Abstract

Globally, tanks play a major part in the provision of access to clean drinking water to the human population. Beyond aiding in the supply of fresh water, tanks are also essential for ensuring good sanitary conditions for people and for livestock. Many countries have realized that a robust water supply and a robust sanitation infrastructure are necessary for sustainable growth. Therefore, there is large demand for the construction of storage tanks. Further, liquid storage tanks are crucial structures which must continue to be operational even after a catastrophic natural event, such as an earthquake, to support rehabilitation efforts. From an engineering point of view, the various forces acting on the tanks and the behaviour of the tanks under various loads are important issues which need to be addressed for a safe design. Analyses of the tanks are challenging due to the interaction between the fluid and tank wall. Thus, researchers have conducted several investigations to understand the performance of storage tanks subjected to earthquakes by considering this interaction. This paper discusses the historical development of various modelling techniques of storage tanks. The interaction with the soil also influences the behaviour of the tanks, and hence, in this paper, various modelling approaches for soil structure interaction are also reviewed. Further, a brief history of various systems of base isolation and modelling approaches of base-isolated structures are also discussed in this article.

DOI

10.3390/su151411040

Publication Date

7-1-2023

This document is currently not available here.

Share

COinS