Finite Element Study on Coconut Inflorescence Stem Fiber Composite Panels Subjected to Static Loading

Document Type

Article

Publication Title

Engineering Proceedings

Abstract

Natural fiber-reinforced composites (NFCs) are alternatives to synthetic fiber-reinforced composites, since they are abundant in nature, inexpensive, lightweight, and have a high strength-to-weight ratio. Natural fibers encompass a diverse composition, including lignin, hemicellulose, wax, and cellulose. Natural fibers are environmentally friendly, biodegradable, renewable, reusable, and sustainable. In bio-composites, natural fibers such as jute, banana, hemp, coir, kenaf, areca nut, and coconut inflorescence stem fibers, are blended with resin. Natural fiber-reinforced bio-composites have various applications in the construction industry, automobile industry, aerospace industry, sports equipment and gadgets, textile industry, and hotel industry. Fibers from natural sources are also used as reinforcements in composites, such as roofing sheets, bricks, door panels, furniture panels, and panels for interior decoration. The mechanical properties of natural fiber-reinforced composites are profoundly influenced by the bonding between the fibers and the matrix. This study involves the testing of compact tension (CT) specimens under mode I fracture conditions and employs three-dimensional finite element analysis (FEA) using ANSYS software to enhance our understanding of the material’s fracture behavior. Finite element analysis was performed on coconut inflorescence stem fiber-reinforced composite (CIFRC) panels with preformed cracks. Numerical simulation was carried out using ANSYS software. Properties such as crack growth initiation, stress-intensity factor, and stresses along the length of a CIFRC panel were examined using finite element analysis (FEA). ASTM D-5045 standards were followed for the specimen size and the ASTM E399 standard was followed for the finite element pre-cracking. The simulation results were found to be in good agreement with the analytical results.

DOI

10.3390/engproc2023059215

Publication Date

1-29-2024

This document is currently not available here.

Share

COinS