"Influence of heat sintering on the physical properties of bulk La0.67C" by Pramod R. Nadig, S. Murari et al.
 

Influence of heat sintering on the physical properties of bulk La0.67Ca0.33MnO3 perovskite manganite: role of oxygen in tuning the magnetocaloric response

Document Type

Article

Publication Title

Physical Chemistry Chemical Physics

Abstract

The effect of heat treatments on bulk poly-crystalline La0.67Ca0.33MnO3 perovskite manganite is presented, to explore the possible enhancement in magnetocaloric performance. Samples were prepared via conventional solid-state reaction route with annealing and sintering at various temperatures. Detailed measurements of temperature-dependent and field-dependent magnetization were carried out to estimate the Curie point and order of magnetic transition. The increased sintering temperature results in a steep transition near the TC, and establishes the magnetic sensitivity as well as the active zone for substantial magnetocaloric performance, at about 168.2% for the LCM9 (sintered at 900 °C) sample. The cause for the significant improvement in the magnetic and magnetocaloric response is brought to light using detailed X-ray photoelectron spectroscopy (XPS) analysis, highlighting the role of oxygen in modifying the Mn3+/Mn4+ charge ratio. The maximum value of the isothermal magnetic entropy change for the optimized sample is found to be 6.4 J kg−1 K−1, achieved at 269 K, while temperature-averaged entropy change (TEC) values, TEC(ΔTH-C = 3 K) and TEC(ΔTH-C = 5 K), of 6 J kg−1 K−1 and 5.2 J kg−1 K−1, respectively, were obtained with a low magnetic field change of 20 kOe. The obtained isothermal entropy change at low field for the optimized La0.67Ca0.33MnO3 sample is higher than that of pure Gd and most oxide-based materials. The relative cooling power (RCP) value is around 93 J kg−1 (ΔH = 20 kOe). The order of the phase transition is examined with universal scaling; the scaled entropy change curves confirm the collapse onto a single curve for LCM9, asserting second-order character, whereas the breakdown of the curve with a dispersion relation (d) of 101.1% at Θ = −5 confirms the onset of intrinsic first-order nature in the case of the high-temperature-sintered samples. Calorimetry measurements show thermal hysteresis of 2.4 K and 7.1 K for LCM11 (sintered at 1100 °C) at ramp rates of 5 K min−1 and 10 K min−1, respectively, confirming the first-order nature of the magnetic transition.

First Page

5237

Last Page

5252

DOI

10.1039/d3cp04185a

Publication Date

1-23-2024

This document is currently not available here.

Share

COinS