Tribological simulation analysis of artificially aged A356 alloy with minor addition of copper and zinc
Document Type
Article
Publication Title
Cogent Engineering
Abstract
This study employed a two-stage stir-casting technique to fabricate experimental alloys and composites using A356 + 1 wt.% Mg as the base alloy and trace copper/zinc as alloying elements and reinforcements. Peak aging conditions were applied through a solutionizing process at 520 °C and subsequent aging at 100 °C and 200 °C. A wear test was conducted using a pin-on-disk tribometer under dry sliding conditions to measure wear and frictional force. The ANSYS software simulated the wear, demonstrating a close approximation to the experimental values. The study emphasized the influence of material hardness and coefficient of friction on the wear coefficient accuracy. A higher hardness yielded closer simulated experimental values, whereas lower friction coefficients enhanced convergence. The increased contact pressure and frictional stress were accompanied by higher applied loads. The study suggests future exploration of thermal changes in frictional contact regions and incorporation of surface irregularities in realistic simulations, requiring advanced computing tools.
DOI
10.1080/23311916.2024.2344118
Publication Date
1-1-2024
Recommended Citation
Nithesh, K.; Gowrishankar, M. C.; Sharma, Sathyashanakara; and Hegde, Ananda, "Tribological simulation analysis of artificially aged A356 alloy with minor addition of copper and zinc" (2024). Open Access archive. 7051.
https://impressions.manipal.edu/open-access-archive/7051