Study on bond behaviour of corroded reinforced concrete beam–finite element analysis

Document Type

Article

Publication Title

Cogent Engineering

Abstract

Present work contains a 3-D finite element (FE) model created in Abaqus to examine bond behavior in controlled/non-corroded reinforced concrete beams. Study evaluated the compatibility between corrosion levels and beam deflections. Cohesive surface-based interaction method is applied to the Data obtained from recent studies in which corrosion was induced by accelerated corrosion technique. The cohesive surface-based interaction approach has been found to be suitable for simulating the interfacial binding between reinforcement bars and the concrete. Analysis of Control and corroded beams along with mesh sensitivity were used for the validation of the work. It is found that maintaining uniform mesh size for steel and concrete is necessary as varying mesh size influences the load–deflection relation. The developed FE model of RC beam under corrosion could be adopted to obtain the load at failure with considerable accuracy. Hence, the model can be adopted to numerically simulate the influence of various parameters on response of corroded RC beams. This would avoid the expensive laboratorial tests. Study demonstrated that experimental and analytical research are in good agreement with considered level of corrosion and corresponding deflections. Rebar yield capacity of corroded RC beam in tension zone declined, resulting in a decrease in load-carrying capability. The modelling outcomes can be used to validate the bond behaviour of Reinforced concrete cantilever beams without considering the influence of stirrups.

DOI

10.1080/23311916.2024.2340298

Publication Date

1-1-2024

This document is currently not available here.

Share

COinS