Asphaltene-derived nanocomposites for the removal of emerging pollutants and its antimicrobial effects: batch and continuous column studies

Document Type

Article

Publication Title

Environmental Science and Pollution Research

Abstract

Emerging contaminants are diverse ecotoxic materials requiring unique treatment for removal. Asphaltenes are environmentally hazardous carbon-rich solid waste product of the petroleum industry. In the current work, asphaltene-derived activated carbon (AC) was loaded with silver (Ag/AC) and used to remove amoxicillin (AMX) and tetracycline (TC) from aqueous phase. The prepared Ag/AC was characterised using FESEM, FTIR, XRD and surface area analysis. The FESEM micrographs confirmed the spherical silver nanoparticle-laden porous AC, and the BET surface area was found to be 213 m2/g. Batch adsorption studies were performed, and the equilibrium data were fit into adsorption isotherm and kinetic models. The Ag/AC exhibited superior monolayer adsorption capacity of 1012 mg/g and 770 mg/g for AMX and TC, respectively. The continuous column studies were also performed to evaluate the breakthrough parameters. Furthermore, the antimicrobial activity of the adsorbent was evaluated using zone of inhibition studies. Ag/AC was found to have an 8-mm-diameter zone of microbial inhibition. The obtained results showed that Ag/AC was a promising material for the removal of antibiotics and inhibition of resistance-developed mutated microbes in effluent water.

DOI

10.1007/s11356-024-33049-8

Publication Date

1-1-2024

This document is currently not available here.

Share

COinS