"Influence of mass ratio and calcination temperature on physical and ph" by Yufei Zhang, Junjie Zheng et al.
 

Influence of mass ratio and calcination temperature on physical and photoelectrochemical properties of ZnFe-layered double oxide/cobalt oxide heterojunction semiconductor for dye degradation applications

Document Type

Article

Publication Title

Particuology

Abstract

A visible light-active photoelectrocatalyst, ZnFe-layered double oxide (LDO)/cobalt(II,III) oxide (Co3O4) composites were obtained by calcining the Co loaded ZnFe-layered double hydroxide (LDH) prepared by a hydrothermal and microwave hydrothermal method. The morphological studies revealed that the ZnFe-LDO/Co3O4 composites exhibited a flower-like structure comprising Co3O4 nanowires and ZnFe-LDO nanosheets. Further, when the mass ratio of Co(NO3)2·6H2O/LDH was 1:1.8 and the calcination temperature was 550 °C, the ZnFe-LDO/Co3O4 composite exhibited 93.3% degradation efficiency for methylene blue (MB) at the applied voltage of 1.0 V under visible light after 3 h. Furthermore, the Mott-Schottky model experiments showed that the formation of a p-n heterojunction between ZnFe-LDO and Co3O4 could effectively inhibit the recombination of electrons and holes in the photoelectrocatalytic process. Meanwhile, free radical scavenging experiments showed that the active radicals of ⋅OH played an important role in the degradation of MB. Therefore, the photoelectrocatalytic effect of ZnFe-LDO/Co3O4 provides a simple and effective strategy for the removal of organic pollutants.

First Page

141

Last Page

155

DOI

10.1016/j.partic.2022.05.010

Publication Date

3-1-2023

This document is currently not available here.

Share

COinS