DeepSkin: A Deep Learning Approach for Skin Cancer Classification
Document Type
Article
Publication Title
IEEE Access
Abstract
Skin cancer is one of the most rapidly spreading illnesses in the world and because of the limited resources available. Early detection of skin cancer is crucial accurate diagnosis of skin cancer identification for preventive approach in general. Detecting skin cancer at an early stage is challenging for dermatologists, as well in recent years, both supervised and unsupervised learning tasks have made extensive use of deep learning. One of these models, Convolutional Neural Networks (CNN), has surpassed all others in object detection and classification tests. The dataset is screened from MNIST: HAM10000 which consists of seven different types of skin lesions with the sample size of 10015 is used for the experimentation. The data pre-processing techniques like sampling, dull razor and segmentation using autoencoder and decoder is employed. Transfer learning techniques like DenseNet169 and Resnet 50 were used to train the model to obtain the results.
First Page
50205
Last Page
50214
DOI
10.1109/ACCESS.2023.3274848
Publication Date
1-1-2023
Recommended Citation
Gururaj, H. L.; Manju, N.; Nagarjun, A.; and Manjunath Aradhya, V. N., "DeepSkin: A Deep Learning Approach for Skin Cancer Classification" (2023). Open Access archive. 9108.
https://impressions.manipal.edu/open-access-archive/9108