Investigation of effective natural inhibitors for starch hydrolysing enzymes from Simaroubaceae plants by molecular docking analysis and comparison with in-vitro studies

Document Type

Article

Publication Title

Heliyon

Abstract

The present study aims to find the effective natural enzyme inhibitors against alpha-amylase and alpha-glucosidase from the array of compounds identified in plants of the Simaroubaceae family using molecular docking and ADME/Toxicity studies. Among the 218 compounds docked against seven enzymes, buddlenol-A and citrusin-B showed the best binding energies (kcal/mol) of -7.830 and -7.383 against human salivary alpha-amylase and pancreatic alpha-amylase respectively. The other two compounds 9-hydroxycanthin-6-one and bruceolline-B had the best binding energy of -6.461 and -7.576 against N-terminal and C-terminal maltase glucoamylase respectively. Whereas the binding energy of prosopine (-6.499) and fisetinidol (-7.575) was considered as the best against N-terminal and C-terminal sucrase-isomaltase respectively. Picrasidine-X showed the best binding energy (-7.592) against yeast alpha-glucosidase. The study revealed that the seven compounds which showed the best binding energy against respective enzymes are considered as the ‘lead hit compounds’. Even though the ‘lead hit compounds’ are not obeying all the laws of ADMET, the drug-likeness properties of 9-hydroxycanthin-6-one, fisetinidol, picrasidine-X, and prosopine were considerable. Also, kaempferol-3-O-pentoside was the recent compound identified from the Simarouba glauca plant extract found to be one among the top five lead hit compounds against four enzymes. This study provides valuable insight into the direction of developing natural compounds as potential starch hydrolysing enzyme inhibitors for managing type 2 diabetes.

DOI

10.1016/j.heliyon.2022.e09360

Publication Date

5-1-2022

This document is currently not available here.

Share

COinS